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Abstract
Induced Pluripotent Stem Cells (iPSCs) can be generated from somatic cells by ectopic expression of 
Yamanaka factors (Oct4, Sox2, Klf4 and c-Myc) or combination of other factors. Genetic alteration 
of fibroblasts exhibits an effect on reprogramming efficiency through multiple signaling pathways, 
including epigenetic modifications, metabolic shifts, Mesenchymal-To-Epithelial Transition 
(MET) and cell proliferation. In order to better understand the underlying mechanisms in cell fate 
determination, in this review we will summarize several genetic alterations involved in the regulation 
of reprogramming fibroblasts into iPSCs.

Introduction
In 2006, the generation of Induced Pluripotent Stem Cells (iPSCs) from somatic cells was achieved 

by the overexpression of four defined transcription factors, classically Oct4 (O), Sox2 (S), Klf4 (K) 
and c-Myc (M). IPSCs share many characteristics with Embryonic Stem Cells (ESCs), including 
the unlimited self-renewal capacity and the multi lineage differentiation potential [1]. During the 
past 12 years, significant progresses have been made in the inducible systems and the elucidation 
of molecular mechanisms during reprogramming. On the methodology, it has been improved 
with different delivery systems, including non-integrating viruses, small-molecule cocktails or 
reprogramming factors [2-4]. On the other hand, the effect of epigenetic modification, metabolic 
shift, the Mesenchymal-to-Epithelial Transition (MET) and cell proliferation on reprogramming 
have also been well studied [5-9]. The recent efforts have managed to increase their programming 
efficiency and safety. The novel techniques provide a platform for modeling human diseases, drug 
screening and regenerative medicine [10-12]. We here in briefly review and discuss several genetic 
alterations involved in the regulation of reprogramming fibroblasts into iPSCs.

Ectopic Overexpression of Genes Regulate Pluripotency during 
Reprogramming

The classical reprogramming with 3F or 4F (Oct4, Sox2, Klf4 and with or without c-Myc) is 
known to be an inefficient way. It is possible that somatic cell reprogramming is influenced by 
introducing one or more transcription factors. Glis1 (Glis family zinc finger1), greatly stimulates 
iPSC generation from fibroblasts when co-infected with OSK [13]. It’s predicted that Glis1 activates 
multiple pro-reprogramming pathways, including c-Myc, Nanog, Lin28, Essrb, Wnt, MET, and etc. 
Similarly, Zfp296 (Zinc finger protein 296) and Zic3 (Zinc finger protein of the cerebellum 3) can also 
enhance the reprogramming efficiency [14,15]. E-Ras is specifically expressed in mouse embryonic 
stem cells (mESCs) and enforced expression of it promotes OSKM-mediated reprogramming. 
Notably, it accelerates the cell cycle through the JNK pathway and gives rise to cell proliferation 
[16]. Bmi1 (B cell-specific Moloney Murin leukemia virus integration site 1) can replace SKM and 
reprogram mouse embryonic and adult fibroblasts into iPS cells in combination with Oct4. Bmi1 
probably play roles by suppressing p16 Ink 4a and p19 Arf and upregulating sox2 and N-Myc [17]. 
IPSCs generated with OSK and Tbx3 are better in germ-cell contribution to the gonads and germ-
line transmission (Table 1). The transcription factor Tbx3 may improve the quality of iPSCs via 
regulating pluripotency-associated and reprogramming factors [18]. Moreover, multiple epigenetic 
modification factors associated with DNA or histonemethylation or acetylation participate and 
facilitate cellular reprogramming of fibroblasts, such as TET1, JMJD2C, SIRT1/6 and MOF [19-23].

Multiple Transgenic Cell Lines Influence Somatic Cell 
Reprogramming

Fibroblasts from several transgenic mice are also utilized in the generation of iPSCs. CHK1 
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(Checkpoint kinase 1) is linked to replication stress in the cell cycle. 
Chk1 transgenic mouse embryonic fibroblast harbor one additional 
allele of the Chk1 gene could reprogram more efficiently than wild 
type cells, which is due to reduction of reprogramming-induced 
replicationstress [24]. A Cre-loxP-mediated conditional transgenic 
mouse line, carrying the Tert (telomerasereverse transcriptase) 
expression cassette, enhances reprogramming via cooperating 
with c-Myc [25]. Additionally, MEF from transgenic mice for the 
inducible expression of Kdm4b have also reprogrammed nine-fold 
better into iPSCs through demethylation of H3K9/36me3 [26]. The 
reprogramming process of FoxO3a-null MEFs is delayed compared 
to the wild-type MEFs. And FoxO3a deficiency impairs the neuronal 
line age differentiation potential of the resulting iPS cells [27].

Activation of Endogenous Gene in 
Fibroblasts Triggers Reprogramming

Generation of induced pluripotent stem cells typically requires 
the ectopic expression of exogenous transcription factors (Figure 
1). Recently activation of endogenous Oct4 or Sox2 genes in 
fibroblasts by CRISPR system and combine with four small molecule 
compounds (Parnate, Chir99021, A83-01, and Forskolin) could 
trigger programming toward iPSCs [28]. Simultaneous remodeling of 
the Sox2 or Oct4 promoter and enhancer through precise epigenetic 
remodeling of endogenous loci could establish the pluripotency 
network. This method sheds light on how targeted chromatin 
remodeling triggers pluripotency induction.

Table-1: Summary of genetic alterations on reprogramming fibroblasts into induced pluripotent stem cells.

Gene Function Genetic alteration Type Effect Reprogramming Factors Reference

Glis1 Gli transcription factor Ectopic expression Positive Glis1, O, S, K Maekawa et al.  
[13]

Zfp296 zinc finger protein Ectopic expression Positive Zfp296, O, S, K, M Fischedick et al.  
[14]

Zic3 Zic transcription factor Ectopic expression Positive Zic3, O, S, K Declercq et al.  
[15]

E-Ras
activate PI3K and 

 promote cell 
proliferation

Ectopic expression Positive E-Ras, O, S, K, M Kwon et al.  
[16]

Tet1
DNA demethylation and 

transcriptional 
reactivation

Ectopic expression Positive TET1, S, K, M Gao et al. [19]

Sirt1

NAD+-dependent 
protein deacetylases, 

block nuclear 
translocation of p53

Ectopic expression Positive Sirt1, O, S, K, M Lee et al. [20]

Sirt6

regulator of 
transcription, genome 

stability, 
telomere integrity

Ectopic expression Positive Sirt6, O, S, K, M Sharma et al. 
[22]

MOF histone acetyltransferase Ectopic expression Positive MOF, O, S, K, M Mu et al. [21]

Tbx3 transcription factor Ectopic expression Positive Tbx3, O, S, K Han et al. [18]

Bmi1
essential for the 

self-renewal 
of stem cells

Ectopic expression Positive Bmi1, O Moon et al. 
[17]

Tert telomerasereverse 
transcriptase Transgenic Positive O, S, K, M Hidema et al. 

[25]
CHK1 checkpoint kinase Transgenic Positive O, S, K, (M) Ruiz et al. [24]

Kdm4b histone lysine 
demethylases Transgenic Positive O, S, K, M Wei et al. [26]

Ink4/Arf tumor suppressor locus Knockdown Positive shRNA-Ink4/Arf, O, S, K Li et al. [29]

Gata4
endodermal 
transcription 

factor
Knockdown Positive shRNA-Gata4, O, S, K, (M) Serrano et al. 

[30]

AMPKα
tumor suppressor 

protein, induce 
autophagy

Knockdown Negative siRNA- AMPKα, O, S, K, M Ma et al. [31]

Cbx3 H3K9 methylation Knockdown Positive siRNA-Cbx3, S, K, M Sridharan et al. 
[23]

Lin-41 a Ring finger-B 
box-Coiled coil protein Knockdown Negative siRNA-LIN-41, O, S, K, let-7 

inh Worringer et al. [32]

p53 tumor suppressor Knockout Positive O, S, K

Hong et al. 
[34]; Brosh et 
al. [35] and 

Kinoshita et al. 
[36]

Dppa3 germ-cell marker Knockout Negative O, S, K Xu et al. [38]

Tert telomerasereverse 
transcriptase Knockout Negative O, S, K, M Kinoshita et al. 

[37]

FoxO3a
regulate the self-renewal 
and homeostasis of stem 

cell
Knockout Negative O, S, K, M Wang et al. 

[9]



Chao Zhang, et al., Annals of Stem Cells and Regenerative Medicine

Remedy Publications LLC. 2018 | Volume 1 | Issue 1 | Article 10073

The Influence of Gene Knockdown in the 
Generation of IPSCs

A series of specific shRNAs or siRNAs combined respectively 
with Yamanaka factors regulate cellular reprogramming. In 2009, 
Manuel Serrano et al. [29] reported that the Ink4/Arf locusblocks 
somatic cell reprogramming and genetic inhibition of the Ink4/Arf 
locus showed aprofound positive effect on the efficiency of iPSC 
induction [29]. Consistently, Gata4 acts as another barrier for iPS 
cell reprogramming. Downregulation of endogenous Gata4 using 
shRNAs during reprogramming both accelerated and increased 
the efficiency of the process and augmented the mRNA levels of 
endogenous Nanog, which is essential to achieve full reprogramming 
to naïvepluripotency [30]. On the contrary, when AMPKα was 
knocked down by specific siRNAs, reprogramming efficiency was 
markedly reduced [31]. And it showed that AMPK-activation-
induced autophagy played a critical role in reprogramming. The let-7/
LIN-41 pathway regulates reprogramming into iPSCs, and knocking 
down LIN-41 with siRNAs during reprogramming with OSK+let-7 
inhibitor also resulted in fewer iPS colonies [32].

Fibroblasts with Gene Knockout Relate to 
Reprogramming Efficiency

Since the reprogramming towards iPSCs was pioneered by 
Takahashi and Yamanaka in 2006, lots of research groups used 
fibroblasts from different knockout mice in order to understand its 
underlying mechanisms. p53 is known as tumor suppressor which 
has a pivotal involvement in cell cycle arrest, apoptosis and DNA 
repair [33]. Yamanaka’s group revealed that they infected p53 wild-
type (p53+/+) mouse embryonic fibroblasts (MEF), p53 heterozygous 
(p53+/-) mutant MEF, as well as p53-null (p53-/-) MEF with 
retroviruses encoding OSK and obtained about a fivefold increase of 
iPSC colonies from p53+/- MEF and dramatically more colonies from 
p53-/-MEF compared with p53+/+ fibroblasts [34]. Furthermore, loss 
of p53 also accelerates iPSC colony formation and is less susceptible to 
differentiate [35,36]. Apart from p53, telomerase which has a function 
in telomere elongation plays a critical role in reprogramming and 
self-renewal of iPSCs. Tail-Tip Fibroblasts (TTFs) from Telomerase 

Reverse Transcriptase Knockout (TERT-KO) mice were tested and 
iPSCs were substantially reduced, which attributes tochromosomal 
instability [37]. Reprogramming of somatic cells to iPSCs often 
comes out different levels reprogrammed iPSCs, such as, partially 
reprogrammed iPSCs (pre-iPSCs), low-grade chimera forming 
iPSCs and high-grade fully reprogrammed iPSCs. Dppa3 is a 
germ cell marker that expressed only in low grade and high grade 
iPSCs. Reprogramming of Dppa3-knockout fibroblasts with OSKM 
generated only pre-iPSCs that failed to express endogenous Oct4 and 
inactivate exogenous reprogramming factors. However, this case can 
be rescued by Vitamin C or exogenous Dppa3. Exogenous Dapp3 can 
enhance reprogramming and generating high-grade iPSCs. Dapp3 
probably worked by antagonizing Dnmt3a to Dlk1-Dio3 locus during 
somatic cells reprogramming [38].

Conclusion 
In conclusion, genetic alteration of fibroblasts combined with 

Yamanaka factors or prior to reprogramming has an effect on 
re-establishment and maintenance of pluripotency via affecting 
signaling networks of epigenetic modifications, metabolic shifts, 
MET and cell cycle. Besides, utilizing transient serum starvation 
induces cell cycle synchronization and it promotes the METand 
facilitates reprogramming [39]. Recent study has further proved that 
serum starvation would stimulate rDNA transcription reactivation 
and overcome the epigenetic barrier to pluripotency [40].

IPSCs could also be induced from mouse fibroblasts by 
full chemicals [41-43]. The mechanisms underlying chemical 
reprogramming are largely elusive. Future studies were needed to 
clarify the roles of genetic factors and the underlying mechanisms 
by interacting with different small-molecule cocktails in the cell fate 
determination.
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