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Introduction 
Asthma is the most frequent non-communicable chronic inflammatory lung disease which 

according to the WHO affects 235 million people, from which 50% are children [1]. The prevalence 
of asthma is increasing constantly without any known reason(s) and there is no cure available, only 
symptoms can be controlled by various medications [2-4]. Asthma is the most frequent reason for 
absence from school, work and social activities. Urbanization is associated with increased asthma 
prevalence however; the nature of this link is unclear. In general, asthma is under-diagnosed and 
under-treated according to the newest evaluation of the World Health Organisation [5]. Moreover, 
a new assessment of asthma diagnosis and management of the WHO indicates that asthma is often 
neglected, or wrongly diagnosed, and is often ignored by society as it has a relatively low fatality rate 
compared to other diseases [5].

Asthma is characterized by recurrent breathlessness and wheezing which varies in severity 
and frequency. These symptoms can occur irregularly, multiple times a day or when triggered by 
a specific stimulus. Allergic asthma is often accompanied by skin and other allergies, which can be 
caused by plant pollen, dust (flour), chemicals or toxins. Thus, it was assumed that asthma is the 
result of a chronic type-2 type inflammation, but there is increasing evidence that there is more to 
its pathogenesis, and airway wall remodelling precedes or parallels inflammation [6, 7]. However, 
about 40% of asthma patients suffer from non-allergic asthma which can be caused by physical and 
psychological stress, by sudden changes in temperature or air humidity [8-10].

The pathogenesis of asthma is not completely understood and new data suggests that the likely-
hood to develop asthma increases when a person is the carrier of agenetic pre-disposition and is 
exposed to specific environmental factors during embryogenesis and in early childhood [11,12].
Environmental factors that can trigger the pathogenesis of asthma by airway irritation include: 
house dust mite faces in bedding, pet dander, plant pollen, mould spores, tobacco smoke, chemical 
irritants or air pollution by dust particles. These factors are often causing an allergic response of the 
lung [12-14]. However, about 40% of asthma cases are due to non-allergic triggers such as cold air, 
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Abstract
The C1q-receptor functions as a stress response protein, a cellular calcium regulator, and as a cell 
death mediator. Thereby it contributes to carcinogenesis and controls innate immunity and. First 
described as an intracellular protein, the C1q-receptor also integrates into the cell membrane and 
mediates the response to extracellular stimuli including collagen degradation fragments, bacterial 
wall proteins and complement proteins. However, its role in chronic inflammatory diseases has not 
been investigated in details. Recent evidence suggests that in chronic inflammatory lung diseases the 
C1q-receptor contributes to infection induced exacerbation, which is the major cause of increased 
morbidity and mortality. In isolated human airway smooth muscle cells, the C1q-receptorregulates 
translation control and thus, can function on the level of epigenetic protein control. In this function, 
the C1q-receptor deregulation may lead to hyperplasia of airway smooth muscle cells, which is 
well documented in asthma. Furthermore, there are studies indicating that the C1q-receptor is a 
positive regulator for a number of asthma relevant pro-inflammatory cytokines, growth factors, and 
extracellular matrix compounds. In regard to asthma exacerbation, it is interesting to know that 
several bacteria and viruses encode for their own specific C1q-receptor or the C1q-receptor -like 
protein, which interacts with its binding proteins on the host cells just as a host own C1q-receptor. 
Thereby, the micro-organisms C1q-receptor can hijack the host cellular regulation system.

This review presents supportive data for the hypothesis that deregulation of the C1q-receptor is a 
major event leading to multiple asthma specific pathologies of the airway.

Michael Roth*

Department of Pulmonary Cell Research and Clinics of Pneumology, University Hospital Basel, Switzerland 



Michael Roth Journal of Respiratory Medicine and Lung Disease

Remedy Publications LLC. 2016 | Volume 1 | Issue 1 | Article 10022

sudden changes of air humidity often occurring in water and winter 
sport activities, severe anger or fear, and other physical exercise, 
obesity, or specific medication such as aspirin, non-steroid anti-
inflammatory drugs, or β2-agonists [15-21]. 

The main stand of asthma therapy consists of combined 
anti-inflammatory and muscle relaxing drugs, mainly inhaled 
corticosteroids (ICS) combined with long acting β2-agonsist (LABA) 
[22,23]. The major therapeutic effect of ICS results from their anti-
inflammatory action which is achieved by the activation of the 
intracellular glucocorticoid receptor and by the modification of DNA 
accessibility through his tone modification [22]. There is controversial 
data if LABA have any anti-inflammatory effect or if their action is 
restricted to the relaxation of muscle cells [23]. Studying the effect 
of these drugs in isolated human airway cells, we were the first to 
provide the molecular biological mechanism that underlies the 
beneficial interaction of ICS and LABA [24-26]. This mechanism was 
later confirmed in tissues of asthma and COPD patients by others 
[27,28]. However, none of the drug has shown reduction of existing 
airway wall remodelling and there is data indicating that ICS, if taken 
in non-acute stages may even worsen remodelling, since under non-
inflamed condition, these drugs increase the deposition of different 
extracellular matrix components [29,30]. This hypothesis was 
supported by a study in patients with mild asthma, in which airway 
wall remodelling occurred within 4 days after allergen or cholinergic 
stimulus inhalation [31]. In this study airway wall remodelling was 
only reduced in those patients who received inhaled β2-agonists 
before the inhalation of the stimulus. In this regard it is of interest 
that increased levels of extracellular matrix degradation products 
have been reported in isolated human airway wall cells as well as in 
tissue and serum samples obtained from asthma patients, but their 
link to the pathogenesis is still not well understood [32-36]. Since 
the C1q-receptor has been reported to modify extracellular matrix 
composition and respond to its degradation products, its contribution 
to the pathogenesis of asthma is suggested [37].

The C1q-receptor as a regulator of innate immunity
The C1q-receptor, which is also known as calreticulin, surfactant 

protein receptor, mannan binding ligand receptor, C1qR, CD93 or 
Aa4, is a ubiquitous, highly conserved calcium-binding protein which 

is mainly located in the sarcoplasmic and endoplasmic reticulum. 
In addition, it has been localized as a cell membrane protein. As 
predicted by its structure the C1q-receptor binds to hormone 
receptors, heat shock proteins (Hsp), integrins, viral and bacterial 
proteins, extracellular matrix components such as collagens, cell 
debris and cytokines [38]. In the nucleus membrane the C1q-receptor 
controls the in and out of the activated glucocorticoid receptor in 
other than lung cell types and might therefore be responsible for 
steroid resistance [39,40]. These studies also showed that the function 
of the C1q-receptor as a pro- or anti-inflammatory factor depends on 
its partnering proteins, the cell type, and on its localisation within a 
cell. 

Most often asthma exacerbations are due to viral or bacterial 
infection [41]. Thus it is important to note that complexes formed 
by pathogenic organism proteins and the C1q-receptor stimulated 
phagocytosis, pro-inflammatory response, but also extended the 
survival of the host cells [42]. Interestingly, the membranous C1q-
receptor directly interacts with various proteins that participate in 
innate immunity and asthma associated exacerbation including 
collectins such as ficolin [43], and manose binding lectins [44,45]. 
Furthermore, the interaction of collectins with the C1q-receptor 
depends on glycosilation [46], which we have reported to be altered in 
asthma and chronic obstructive pulmonary disease (COPD) [47,48]. 
Both ficolin and MBLs have been related to increased exacerbation 
frequencies in asthma [49,50] and frequent infection as well as to 
oxidative stress in COPD [51]. 

Collectins and complement components bind and activate the 
C1q-receptor and have already been linked to the regulation of innate 
immune response in the late 1990’s [52,53].In the lung, collectins 
have also been shown to modify innate immunity through activation 
of the C1q-receptor [54]. In a rat model, it was shown that the C1q-
receptor is the central regulator of natural killer cell activity [55]. 
The activation of the C1q-receptor also controls the differentiation 
of monocyte-derived dendritic cells through modification of innate 
and acquired immunity [56]. Platelet activation by the action of the 
C1q-receptor has been linked to collagen-derived peptides which 
may be relevant for the modification of innate immunity in response 
to tissue remodelling [57]. A further function of the C1q-receptor is 
its role as a marker for cells to undergo apoptosis which is resolved 
by macrophage phagocytosis [58]. Further studies showed that 
complement activation of the C1q-receptor should be regarded as a 
unique sensor for “danger signal” which trigger the innate immune 
response [59]. The known activators of the C1q-receptors are shown 
in (Figure 1).

The C1q-receptor in the regulation of pro-inflammatory 
cytokines in asthma

Activation of the C1q-receptor increases IL-6 and IL-8 secretion, 
which are both important to general immune activation and 
infiltration of eosinophils into the asthmatic lung [60]. Interestingly, 
this effect of C1q-receptor seems to be highly conserved through 
evolution [61]. This action involves TNF-α, another asthma relevant 
cytokine, which subsequently induces the signalling cascade of 
mitogen activated protein kinases [62], and their target NFKB [63,64]. 
Interestingly, soluble C1q-receptor can also induce the production 
of TNF-α and IL-6 by macrophages [63], which makes it likely that 
this pathway represents the activation of the host cells in response 
to bacterial or viral infections through the micro-organisms own 
calreticulin [65-70]. Interestingly, the reduction of the C1q-receptor 

Figure 1: The membranous C1q-receptor functions as the mediator of many 
extracellular factors, including: manose binding lectin (MBL), surfactant 
protein (SP), and complement component 1 (C1q).
NK = natural killer cell.
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expression stabilized the inhibitor of NFKB, IKB, thereby reducing 
histone modification and cytokine secretion [64]. In cardio-myocytes 
of mice, it has been observed that glutathione depletion increased the 
C1q-receptor expression and thereby enhanced myocyte proliferation 
[71]. 

The C1q-receptor controls protein folding when it is located in 
the endoplasmic reticulum where it has been shown to modify the 
structure of IL-12α and β [72]. A similar effect of the C1q-receptor 
was reported on IL-23 [73]. Furthermore, C1q-receptor affects the 
expansion of B-cells and the secretion of IL-10 [74]. In T-cells, the 
C1q-receptor enhanced IFN-γ secretion and the expression of CD40 
on dendritic cells [75]. Finally in macrophages, the C1q-receptor 
induced autophagy through the activation of IL-1β [76]. A summary 
of the effects of the C1q-receptor on cytokine release is shown in 
(Figure 2).

The role of the C1q-receptor in airway wall remodelling
Beside chronic inflammation, asthma is characterised by 

extensive airway wall remodelling, presenting as increased mass of 
smooth muscle bundles, sub-epithelial fibrosis, and extracellular 
matrix deposition, which were first described in 1922 [77]. This major 
pathology was believed to increase with the duration of the disease but 
it has recently been demonstrated that it can be induced within days 
and is independent of inflammation and was related to constrictive 
forces in the airway wall [31]. Once established, the remodelled 
airway wall is largely resistant to therapy and the increased airway 
smooth muscle bundles are responsible for the hyper-constrictive 
force, airway narrowing, and the increased deposed extracellular 
matrix that together stiffens the airways and reduces its flexibility, 
thereby limiting the patient’s breathing capacity [78]. However, in a 
complex disease such as asthma, the malfunction of a single cell type 
is unlikely the exclusive cause. In order to understand what causes 
asthma, we need to regard the network between the airways tissue 
forming cells with the infiltrating immune cells as an inseparable unit 
as it has been suggested by Holgate in 2000 [79]. Interestingly, the 
C1q-receptor has been shown to promote fibrotic responses when 
released from epithelial cells in other diseases [80].

New studies indicate that bronchial epithelial cells control the 
airway wall structure and the function of sub-epithelial smooth 
muscle cells and fibroblasts through secreted growth factors and 
cytokines [81-83]. In conditions other than asthma, the C1q-receptor 
has been linked to tissue remodelling mediating and regulating TGF-β 
expression and function, as well as pro-inflammatory extracellular 
matrix synthesis [84,85]. In this context, the interaction between 
thrombospondin and the C1q-receptor plays an important role in 
wound repair and chronic inflammatory tissue remodelling [86], 
both events are important to airway wall remodelling in asthma. In 
renal fibrosis, it was the C1q-receptor produced by tubular epithelial 
cells that induced sub-epithelial fibrosis, through TGF-β synthesis, 
extracellular matrix production, and fibroblast proliferation [87]. 
There is no information if a similar mechanism involving the C1q-
receptor occurs in sub-epithelial fibrosis in asthma.

In regard to asthma, the function of the C1q-receptor has 
been studied in isolated human airway smooth muscle cells. We 
have reported that the increased expression of the C1q-receptor 
was strongly associated with the decreased translation of the cell 
differentiation regulating transcription factor C/EBP-α [88]. This 
reduced C/EBP-α expression was cell type and disease specific and 
increased the proliferation of airway smooth muscle cells [26,89]. 
Furthermore, the C1q-receptor was up-regulated by the most power 
full asthma trigger - house dust mite allergens [90]. In healthy airway 
smooth muscle cells up-regulation of the C1q-receptor down-
regulated C/EBP-α expression and thereby increased cell proliferation 
[91]. Others reported that the C1q-receptor is up-regulated in airway 
smooth muscle cells by IL-13, an asthma relevant pro-inflammatory 
mediator [92]. In murine tracheal smooth muscle cells the C1q-
receptor was associated with caveolin and activated calcium pump 
proteins, suggesting a new role of the membranous C1q-receptor 
[93].

In lung fibroblasts, the C1q-receptor expression was increased by 
stress such as heat [38], and together with other epithelial cell specific 
proteins, surfactant proteins (SP-A, SP-D), the C1q-receptor enhanced 
or suppressed inflammatory mediator production depending on its 
binding sites. Binding of thecC1q-receptor to the collagenous tail 
of SP-A and SP-D induced pro-inflammatory mediator production, 

Figure 2: The C1q-receptor can act as an anti-inflammatory factor or as 
a pro-inflammatory factor. The conditions under which it acts have to be 
further defined. Arrows indicate stimulating effects, while round end indicate 
inhibitory effects.

Figure 3: The C1q-receptor as a promoter of airway wall remodelling 
in asthma. Arrows indicate stimulating effects, while round end indicate 
inhibitory effects.
TGF = tumor growth factor, C/EBP = CCAAT/enhancer binding protein.
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while binding with other site was anti-inflammatory [38]. Airway 
epithelial cells are the major source of SPs which are fundamental 
to the control of airway function and may be linked to embryonal 
pre-dispositioning to asthma through their interaction with thecC1q-
receptor [94]. It is surprising that the function of the C1q-receptor, 
as a major signal mediator for surfactant proteins, mannan binding 
proteins and other collectins, has been neglected in the past 10 years 
[95-99]. (Figure 3) shows the known effects of the C1q-receptor in 
tissue remodelling.

Conclusion and Hypothesis
In conclusion, asthma remains a major burden for social life and 

health care systems worldwide and new curative therapeutic targets 
are needed [1]. The dogma that asthma results from chronic airway 
inflammation has recently been challenged and it is indicated that 
airway wall remodelling is an independent pathology of asthma 
which may even cause inflammation. 

Based on the above presented evidence, it can be postulated 
that the malfunction of the C1q-receptor is causatively linked to 
the pathogenesis of asthma. The C1q-receptor can be regarded as a 
major initiating factor of asthma which activates tissue remodelling, 
inflammation and innate immunity. Furthermore, the role of the 
C1q-receptor in asthma exacerbation caused by infections should be 
further analysed. Referring to the above studies, it can be suggested 
that neutralising the C1q-receptor will resolve many pathologies of 
asthma and help to develop novel curative drugs.

The hypothesis that the increased expression of the C1q receptor 
in asthma is the cause of increased airway wall remodelling and 
increased secretion of pro-inflammatory cytokines is illustrated in 
(Figure 4).
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