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Introduction
Proteinuria, manifested predominantly as albuminuria, is not only a marker of kidney disease 

but also a known risk factor associated with kidney disease progression, cardiovascular disease and 
death in people with renal disease, hypertension, diabetes, vascular disease and in general population 
[1-3]. Increases in albuminuria also significantly associated with cardiovascular death, composite 
cardiovascular outcomes (atherosclerotic lesions, cardiovascular death, myocardial infarction, 
stroke, and hospitalization for heart failure) independently of its baseline values [3,4]. Chronic 
kidney disease (CKD) was defined by the Kidney Disease Outcomes Quality Initiative (KDOQI) 
guidelines as persistent kidney damage usually marked by albuminuria or reduced glomerular 
filtration rate [5]. CKD is recognized as a major public health problem affecting 10-16% of the 
adult population worldwide, increasing the risk of all- cause mortality, cardiovascular disease and 
progression to kidney failure [6]. This Review discusses the main mechanisms leading to protein loss 
and subsequently analyzes in depth the mechanisms involved in their rescue both at tubular and at 
glomerular compartments.

How Kidney Lose Proteins
The Glomerular Filtration Barrier

Glomerular protein handling mechanisms have received much attention in the study of 
proteinuria [7]. The renal corpuscle (glomerulus) is composed by different cell types: parietal 
epithelial cells, podocytes, endothelial cells and mesangial cells. Mesangial cells are irregularly shaped 
and surrounded by an extracellular matrix (mesangial matrix) that lies between the mesangial and 
endothelial cells or the glomerular basement membrane (GBM) [8]. The glomerular barrier is by 
far the most complex biological membrane, with properties that allow for high filtration rates of 
water and not-restricted passage of small and middle-sized molecules [9]. Endothelial cells and 
podocytes have a negatively charged surface glycocalyx which, together with GBM sialoproteins and 
heparan sulfate, gives the glomerular filtration barrier an overall negative charge at physiological 
pH. Moreover, recent detection of mutations in the main component of the podocyte glycocalyx, 
podocalyxin, in familial nephrotic syndrome supports charge selection through electrostatic 
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Abstract
Proteinuria, manifested predominantly as albuminuria, has been recognized as an independent risk 
factor for both renal and cardiovascular disease. The loss of proteins is the hallmark of tubular and 
glomerular diseases and can be due to structural and/or functional alterations involving different 
cell types. Several studies have underlined the involvement of gene mutations in the pathogenesis of 
glomerulopathies and tubulopathies.

In the kidney, proximal convoluted tubular epithelial cells are the main responsible for the uptake 
of filtered macromolecules. Protein endocytosis needs an active receptor-mediated pathway 
which involves Megalin (LRP2), Cubilin, Amnionless (AMN), Disabled-2 (Dab2), the low density 
lipoprotein receptor adaptor protein 1 (ARH) and the Cl-/H+ antiporter ClC-5. Although the role of 
the tubular cells in the protein uptake is a well-known process, less is known regarding the role of 
glomerular cells (podocytes, mesangial, endothelial and parietal epithelial cells) in protein rescue. 
In the last few years, major attention has been focused on albumin handling by glomerular cells in 
particular by podocytes and parietal epithelial cells.

In this review we described the principal mechanisms leading to protein loss and we examined in 
depth the mechanisms involved in their rescue both at tubular and glomerular levels. The actual 
knowledge scenario supports the idea of a partnership between tubular and glomerular cells in 
albumin uptake, via the same way of internalization.

Keywords: Proteins; Proteinuria ; Podocytes; Dab2; Glomerulopathies; Megalin



Dorella Del Prete, et al. Journal of Clinical Nephrology & Kidney Diseases

Remedy Publications LLC. 2016 | Volume 1 | Issue 1 | Article 10022

repulsion not less important in the glomerular filtration process 
is the slit diaphragm [10]. In the past few years, much has been 
learned about the molecular architecture of this structure. During 
development, podocytes are initially connected via tight-junction 
and gap-junction components. Gradually, these components are 
replaced by the neuronal-junction components, nephrin, podocin 
and Neph1. These proteins form a zipper-like structure that is the 
hallmark of the mature slit diaphragm [11]. Podocyte injury is not the 
only cause of glomerular diseases, but a stable podocyte architecture 
with interdigitating foot processes connected by highly specialized 
filtration slits is essential for the maintenance and proper function 
of the glomerular filtration barrier. Experimental and clinical studies 
have indicated a pivotal role of podocyte injury in the development 
and progression of glomerular diseases [12].

The classical view of a tight glomerular filtration barrier was 
challenged a couple of years ago, when intravital 2-photon microscopy 
was used to reassess the glomerular sieving coefficient of albumin 
in live rats [13]. The quantity of albumin that passes through the 
glomerular filtration barrier is a controversial point. Tenten et al. [14] 
suggested that large amounts of albumin (in the range of 200 g/day 
when translated into human subjects) pass through the glomerular 
barrier and are subsequently retrieved by the proximal tubule and 
transferred via transcytosis to the circulation as intact protein. On the 
other hand, using the same intravital imaging approach, other groups 
have reported a glomerular sieving coefficient of albumin which was 
much lower [15]. These differences are probably due to the conditions 
of the animal and the collection of out-of-focus fluorescence in 
Bowman's space [13]. These data suggest a role also for tubular cells 
in the pathogenesis of proteinuric diseases.

Glomerulopathies
Glomeruli may be injured by different mechanisms and in the 

course of a number of systemic diseases. Diseases that present with 
proteinuria can be divided into three categories: diseases that are 
caused by abnormal glomerular cell function (e.g., Minimal Change 
Disease, Focal Segmental Glomerulosclerosis (FSGS), Diffuse 
Mesangial Sclerosis), diseases with antibody- mediated mechanisms 
(e.g., lupus nephritis, membranoproliferative glomerulonephritis, 
membranous nephropathy, IgA nephropathy) and diseases that 
are associated with metabolic disorders (e.g., diabetic nephropathy, 
obesity related glomerulopathy) [16].

A large number of inflammatory and degenerative glomerular 
diseases are prone to progress to chronic kidney disease displaying 

different histopathological features and time courses of progression 
[17]. Progression of fibrosis at glomerular level starts with the loss 
of the separation between the tuft and the Bowman's capsule. In 
degenerative conditions, this process leads to focal segmental 
glomerulosclerosis, in inflammatory conditions to crescentic 
glomerulonephritis. In both, the outcome with respect to progression 
is very similar [18]. Moreover, metabolic disorders such as diabetes 
and obesity, can also induce FSGS and fibrosis at glomerular level 
[19,20] (Figure 1).

Albuminuria has been shown to be also an independent risk 
factor for the progression of renal disease and protein overload was 
demonstrated to cause interstitial inflammation and fibrosis both 
in human and animals [21-23]. The concept of albumin-induced 
renal inflammation and scarring at tubular interstitial level has been 
intensively explored using both clinical and experimental approaches. 
The term “tubulointerstitial fibrosis” identifies extensive scar 
formation encountered in autopsies/biopsies of fibrosis development, 
including early stages of focal nephron degeneration/atrophy 
locally associated with interstitial matrix production [17] (Figure 
2). Interstitial fibrosis is known to be of major importance in the 
deterioration of renal function and the well-known strong relationship 
to proteinuria suggests a role for filtered proteins in the development 
of this condition. In fact, the progression of the interstitial fibrosis 
may be perpetuated by filtered proteins through activation of tubular 
cells [24]. Transforming Growth Factor (TGF)-β1 is a key molecule 
in the fibrogenic cascade leading to CKD. It has been demonstrated 
that high concentrations of albumin induced TGF-β1 gene resulted 
in enhanced release of the cytokine in the supernatant of proximal 
tubular cells in culture [24].

Current thinking suggests that virtually all cases of the diseases 
caused by abnormal glomerular cell function begin with podocyte 
damage or dysfunction. For this reason, these diseases have been 
termed podocytopathies [16]. Podocytopathies are the most common 
group of glomerular disorders leading to proteinuria [25,26]. There is 
an evidence for a potential role for immune- regulation in podocytes 
damage since these cells express cytokine and chemokine receptors 
that were demonstrated to be target of immune stimuli both in vivo 
and in vitro [10].

In the next paragraph, we go in deep in the analysis of genes 
involved in hereditary glomerulopathies.

Hereditary Podocytopathies: Podocytopathies can also be 
consequences of genetic events (genetic mutations and deletions) in 

Figure 1: Glomerular fibrosis. Masson's trichrome stain highlighting collagen  
deposition. Magnification 100X.

Figure 2: Tubulo-interstitial fibrosis. Masson's trichrome stain highlighting 
collagen deposition. Magnification 100X.
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podocytes genes. The genes involved in podocytes injury are numerous 
and code for structural elements of the slit diaphragm, for podocyte 
polarity and cytoskeleton, for proteins and enzymes associated 
with the glomerular basement membrane, for mitochondrial and 
lysosomal proteins, for nuclear proteins necessary for normal 
podocyte function and development, and for molecules involved in 
metabolic and signaling pathways (Table 1). Glomerular basement 
membrane gene defects usually result in insidious plasma protein 
leak whereas defects in slit diaphragm genes cause precipitous leak 
and nephrotic syndrome [10] (Table 1).

How Kidney Rescue Proteins
Tubular protein uptake

The nephron is composed of many different segments that work 
together to filter plasma, generating urine essentially devoid of large 
molecular weight proteins and regulating electrolyte balance through 
tubular secretion and re-absorption. The protein filtration process 
begins at the glomerulus and proceeds at proximal tubular level with 
the involvement of the endocytic machinery located at the brush 
border membrane [27].

Proximal tubular epithelial cells (PTECs) are tall and have a 
dense brush border of microvilli that greatly expand the area available 
for absorption. At the bases of the microvilli, the cell membrane is 
pitted extensively and displays numerous apical canaliculi that lead 
into the cytoplasm. This network of pits and tubules is underlined 
by vesicles representing various stages of endocytosis and is related 
to resorption of proteins from the ultrafiltrate [28]. The proximal 
tubule is appointee to retrieve low molecular weight (LMW) proteins 
and albumin from the glomerular filtrate. Defects in the receptors 
that mediate the uptake of these filtered ligands or saturation of 
the clearance pathway (e.g. in diabetes), lead to LMW proteinuria 
(LMWP). Prolonged LMWP (also termed tubular proteinuria 
because it does not involve glomerular dysfunction) causes further 
deterioration in kidney function and leads to renal failure [29].

In the kidney, reabsorption of filtered proteins occurs principally 
by receptor-mediated endocytosis in the proximal tubule. The apical 
endocytic apparatus is very elaborate consisting of coated pits, coated 
vesicles, endosomes and lysosomes responsible for membrane and 
receptor recycling from endosomes to the apical plasma membrane 
[30]. The most extensively studied and best characterized process at 
tubular level is clathrin-mediated endocytosis, which involves the 
internalization of cell-surface receptors and soluble molecules from 
the extracellular fluid in clathrin-coated vesicles that bud off from 
the plasma membrane [31,32]. Protein endocytosis at tubular level 
needs an active receptor-mediated pathway that principally involves 
megalin (LRP2), cubilin (CUBN), amnionless (AMN), disabled-2 
(Dab2), the low density lipoprotein receptor adaptor protein 1 (ARH) 
and the Cl-/H+ antiporter ClC-5 [33] (Figure 3). Receptor-mediated 
endocytosis requires the coordinated functioning of numerous 
proteins and signal transduction molecules. In particular, megalin 
and cubilin play a central role in the process [33]. These receptors 
bind a variety of filtered ligands with varying affinities mediating 
delivery of their ligands to the lysosomes of the proximal tubule, 
while they undergo recycling themselves [34,30]. Upon endocytic 
uptake, progress to the lysosomes requires endosomal acidification to 
dissociate proteins from the receptors, permitting their degradation 
in lysosomes by the action of specific enzymes [35]. Although 
proteins are degraded in lysosomes, vitamins and trace elements 
are returned to the circulation by transport across the basolateral 

membrane. In addition, reabsorbed substances may be metabolized 
within the proximal tubule cells as illustrated by the important renal 
activation of endocytosed 25-OH- vitamin D3 [30]. In vitro studies 
have established a number of pathways by which albumin and other 
filtered proteins may activate cellular pathways in proximal tubule 
cells leading to apoptosis, endoplasmic reticulum stress, interstitial 
inflammation and fibrosis, and possibly epithelial-mesenchymal 
transformation, eventually leading to interstitial fibrosis and 
accelerated nephron loss [36].

In the following sections, we outline properties and functions 
of the components involved in protein uptake in proximal tubular 
epithelial cells.

Megalin: Megalin (gp330) was first identified as a rat Heymann 
nephritis antigen (37) (Figure 3). Cloning and sequencing of the 
megalin encoding gene LRP2 uncovered a huge, glycosylated protein 
(600 kDa, 4,655 amino acids) with similarities to endocytic receptors 
of the LDL receptor family [30]. Megalin plays a particular key role 
in the proximal tubular uptake of glomerular-filtered albumin and 
other LMW proteins. Consistent with this function, Lrp2 knockout 
(KO) mice develop LMWP and albuminuria. Lrp2 KO mice have 
important ultrastructural changes in the endosomal compartments of 
proximal tubular epithelial cells, including the absence of apical dense 
tubules, which correspond to the apical recycling compartment, and 
other endocytic structures, such as clathrin-coated pits and vesicles 
[38].

Cubilin: Cubilin, which was first identified as the receptor for 
intrinsic factor-vitamin B12, is co- expressed with megalin on apical 
tubular epithelial cells and in podocytes [33,39,40] (Figure 3). This 
giant protein (glycosylated 460 kDa) shares no homology with other 
known receptors [41]. Cubilin ligands may be divided into ligands 
that bind only to cubilin and ligands that bind to both megalin and 
cubilin. Whereas some vitamin carriers such as the retinol binding 
protein apparently bind exclusively to megalin, others such as vitamin 
D-binding protein bind with similar affinity to both megalin and 

Figure 3: Protein uptake system at tubular level. Megalin and  the Cubilin-
AMN complex (CUBAM) are the main actors in protein uptake mechanism 
since both Megalin and Cubilin present albumin binding sites in their 
structure. ARH and Dab2 are involved in the vesicle trafficking binding to the 
NPXY motif present in both Megalin and AMN but interacting with different 
adaptor proteins (ARH binds to microtubules via Dynein while Dab2 binds to 
actin filaments via Myosin VI). Although a small proportion of ClC-5 can be 
detected in the apical brush-border membrane of renal proximal tubular cells, 
its importance in the endocytic process was well described.
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Gene Protein Clinical signs Ref.

SD associated and adaptor proteins

CD2AP CD2-associated protein Focal segmental glomerulosclerosis type 3 [116]

E2F3 E2F transcription factor 3 Early onset nephrotic syndrome [10]

FYN Fyn proto-oncogene Focal segmental glomerulosclerosis [117]

GNE Glucosamine uridine diphospho–N- acetylglucosamine 2- 
epimerase/ N-acetylmannosamine kinase Severe glomerular proteinuria [118]

NEPH1 Kin of IRRE-like 1 Proteinuria and perinatal lethality [119]

NPHS1 Nephrin Finnish type nephrotic syndrome [120]

NPHS2 Podocin Steroid-resistant nephrotic syndrome type 2 [121]

NXF5 Nuclear RNA export factor 5 Nephrotic syndrome with co- segregating heart 
block disorder [10]

PLCE1 Phospholipase C ε 1 Steroid-resistant nephrotic syndrome type 3 [122]

 PTPRO/GLEPP1 Protein-tyrosine phosphatase receptor or/Glomerular epithelial 
protein 1 Childhood-onset nephrotic syndrome [123]

SYNPO Synaptopodin Focal segmental glomerulosclerosis [117]

TRPC6 Transient receptor potential cation channel, homolog of 6 Focal segmental glomerulosclerosis type 2 [124]

ZHX1, ZHX2 and 3 Zinc fingers and homeoboxes 1/2/3 Nephrotic syndrome [125]

GBM

CD151 CD151 Nephrotic syndrome [126]

COL4A3, COL4A4 and COL4A5 Type IV collagen α3, α4 and α5 Alport’s syndrome Goodpasture's syndrome [127]

DDR1 Discoidin domain receptor 1 GBM thickening and proteinuria [128]

ITGA3 Integrin subunit alpha 3 Epidermiolysis bullosa and pyloris atresia with 
nephrotic syndrome [10]

ITGB1 Integrin β1 Proteinuria and kidney failure [129]

ITGB4 Integrin β4 Congenital focal segmental glomerulosclerosis [130]

LAMB2 Laminin beta 2 Pierson syndrome [131]

LMNA Lamin A/C Familial partial lipodystrophy with nephrotic 
syndrome [10]

RAP1GAP RAP1 GTPase-activating protein Focal segmental glomerulosclerosis [132]

TLN1 Talin 1 Nephrotic syndrome [133]

Podocyte polarity

aPCKλ/ι A typical protein kinase Clambda/iota Nephrotic syndrome [134]

CDC42 Cdc42 Congenital nephropathy [135]

VANGL2 Van Gogh-like [planar cell polarity] protein 2 Neural tube defects [136]

Cytoskeleton

ACTN4 Alpha-Actinin 4 Focal segmental glomerulosclerosis type 1 [137]

ACTN4 α-actinin 4 Focal segmental glomerulosclerosis [138]

ANLN Anilin Focal segmental glomerulosclerosis [139]

ARHGAP24 RhoA-activated Rac1 GTPase-activating protein 24 Focal segmental glomerulosclerosis [140]

ARHGDIA Rho guanine nucleotide dissociation inhibitor-α Nephrotic syndrome [141]

CFL1 Cofilin-1 Proteinuria [142]

CLTA4/CD152 cytotoxic T-lymphocyte associated protein 4 Sporadic nephrotic syndrome [10]

GPC5 Glypican 5 Nephrotic syndrome [143]

INF2 Inverted formin 2 Focal segmental glomerulosclerosis [144]
KANK1, KANK2 Kidney ankyrin repeat- containing protein Nephrotic syndrome [145]and KANK4
MYH9 Myosin heavy chain 9 Adult onset nephrotic syndrome [10]

MYO1E Myosin 1e Focal segmental glomerulosclerosis [146]

PDSS2 Decaprenyl diphosphate synthase, subunit 2 Leigh syndrome [associated with nephrotic 
syndrome] [147]

PODXL Podocalyxin like Early or adult onset nephrotic syndrome [10]

RHPN1 Rhophilin-1 Focal segmental glomerulosclerosis [148]

Table 1: Genes associated with podocytes damage in vivo and/or in vitro.
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TTC21B Tetratricopeptide repeat domain 21B Nephrotic syndrome with tubulointerstitial 
involvement [10]

Signaling pathway

CMIP C-Maf-inducing protein Nephhrotic syndrome [149]

CTNNB1 β-catenin Focal segmental glomerulosclerosis [150]

ILK Integrin-linked kinase Progressive glomerulosclerosis [151]

NOTCH-IC Notch’s intracellular domain Glomerulosclerosis [152]

PI3KC2α Class II phosphoinositide 3- kinase C2 α Minimal-change nephropathy and focal 
segmental glomerulosclerosis [153]

PIK3C3/VPS34 Class III phosphoinositide 3- kinase/Vacuolar protein sorting 34 Glomerulosclerosis [154]

VHLH/HIF1A Hypoxia-inducible factor 1 α GBM thickening and proteinuria [155]

WNT Wingless-type MMTV integration site family 1 Focal segmental glomerulosclerosis [150]

YAP Yes-associated protein Focal segmental glomerulosclerosis [156]

Nuclear proteins

LMX1B LIM homeobox transcription factor 1 beta Nail–patella syndrome [157]

NFAT Nuclear factor of activated T cells Glomerulosclerosis [158]

PAX2 Paired box gene 2 Adult-onset focal segmental 
glomerulosclerosis [159]

SMARCAL1 SWI/SNF-related, matrix associated, actin-dependent regulator 
of chromatin, subfamily a-like protein 1

Schimke immuno-osseous dysplasia 
[associated with nephrotic syndrome] [160]

WDR73 WD repeat domain 73 Galloway-Morwat Syndome [10]

WT1 Wilms tumor 1 gene Denis-Drash syndrome Frasier syndrome [161] 
[162]

Mitochondrial

ACDK4 aarF domain containing kinase 4 Nephrotic syndrome, steroid- resistant [163]

ADCK4/NPHS9 Alpha-actinin 4 Focal segmental glomerulosclerosis [164]

COQ2 Coenzyme Q2 COQ2 deficiency [associated with nephrotic 
syndrome] [165]

COQ6 Coenzyme Q6 Nephrotic syndrome with sensorineural defects [166]

CYP11B2 Cytochrome P450 family 11 subfamily B member 2
C-344 SNP risk factor for IgA nephropathy, 
nephrotic syndrome and proliferative 
glomerulopathy

[10]

MTTL1 Mitochondrial tRNA leucine 1 Steroid-resistant nephrotic syndrome. Focal 
segmental glomerulosclerosis [167]

tRNAAsn Mitochondrial tRNA Asparagine Multiorgan failure and nephrotic syndrome [10]

tRNAIle Mitochondrial tRNA Isoleucine Deafness, nephrotic syndrome, epilepsy and 
dilated cardiomyopathy [10]

tRNATyr Mitochondrial tRNA Tyrosine Mitochondrial cardiomyopathy and nephrotic 
syndrome [10]

ZMPSTE24 Zinc metallopeptidase STE24 Mandibuloacral dysplasia with nephrotic 
syndrome [10]

Metabolic or lysosomal

ALG1 Chitobiosyldiphosphodolichol beta-mannosyltransferase Congenital disorder of glycosylation [10]

PMM2 Phosphomannomutase 2 Congenital disorder of glycosylation [10]

SCARB2/LIMP2 Scavenger receptor class B, member 2 AMRF syndrome [Action myoclonus-renal 
failure syndrome] [168]

cubilin, and albumin probably with highest affinity to cubilin [30].

Since constitutive knockout of Lrp2 or Cubn caused perinatal 
death in the KO mice, several conditional KO mice were obtained. 
In vivo studies on the role of cubilin and megalin in the progression 
of renal disease using Cubn or Lrp2 knockout mice have produced 
somewhat conflicting results with no conclusive evidence for a 
role of the receptors in the progression of the disease due to: 1. 
differences between mice and humans, possibly related to a difference 
in expression levels or individual lifespan and observation time; 2. 
residual expression in the various conditional gene knockout mouse 
models; or 3. downstream effects following loss of expression in non-
renal organs [41]. A role of megalin in the regulation of apoptosis has 
also been proposed [42], but an involvement of megalin and cubilin in 
protein overload-induced tubulopathy and interstitial inflammation 

and fibrosis is, however, not definite [43].

Amnionless: Amnionless (AMN) exists in at least five different 
sizes ranging from 38−50 kDa [41]. Cubilin and AMN co-localize 
closely in the kidneys, intestine and yolk sac of mice and AMN is 
essential during biosynthesis and trafficking of cubilin [44] (Figure 
3). Cubilin forms a functional complex with AMN named CUBAM, 
which is translocated to the plasma membrane and displays megalin-
independent activity [33]. Moreover, cubilin is dependent on AMN 
for its normal translocation from the endoplasmic reticulum (ER) to 
the membrane as well as for consequent endocytosis. The association 
to cubilin occurs through the epidermal growth-factor- like repeats 
in cubilin [41]. It is difficult to exclude whether AMN contributes to 
cubilin endocytosis also when cubilin is associated to megalin, since 
studies of cubilin without AMN are difficult to perform due to the 
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interdependent apical sorting of AMN and cubilin [30].

Disabled-2: Disabled-2 (Dab2, also known as DOC-2 or p96) was 
described as a member of cargo-specific adaptor proteins as it binds to 
megalin, clathrin, clathrin adaptor 2 (AP-2), and phosphoinositides 
[45] (Figure 3). The Dab2 gene is alternatively spliced to produce two 
protein products, one of which, p96, binds to clathrin and the clathrin 
adaptor AP2, and localizes to clathrin-coated pits, whereas the other, 
p67, does not [46]. Dab2 is also implicated in signal transduction 
events in cell proliferation and differentiation during development. 
Dab2-/- mutant embryos arrest before gastrulation and fail to grow 
due to significant apoptosis [45]. Moreover, Dab2 associates with 
both the type I and type II TGFβ receptors in vivo, suggesting an 
essential role in the TGFβ signaling pathway [47]. In the kidney, 
Dab2 acts as an adaptor protein in the megalin-mediated endocytosis 
of filtered proteins [48]. Dab-2 interacts with myosin VI, the motor 
protein responsible for trafficking of vesicles through the cortical actin 
barrier, which underline the role of Dab-2 in receptor internalization 
and the steps immediately after it [49]. The adapter protein Dab2 and 
megalin mutually regulate each other’s localization in PTECs. The 
expression of Dab2 in PTECs appears to be dependent on megalin or 
factors associated with megalin, while knocking-out of the Dab2 gene 
decreases the level and alters the subcellular distribution of megalin 
in PTECs [50].

ARH: Dab2 is not the only adaptor protein involved in megalin 
endocytosis. The low density lipoprotein receptor adaptor protein 1 
(LDLRAP1 or ARH) is required for megalin trafficking from early 
endosomes to the endocytic recycling compartment while Dab2 
mediates megalin internalization [51] (Figure 3). The difference 
between the functions of ARH and Dab-2 can most likely be 
explained by the differences in the proteins they interact with. ARH 
interacts with the motor protein dynein, which facilitates trafficking 
of vesicles along microtubules to the pericentriolar region [52]. The 
megalin–ARH complex is taken up by clathrin-mediated endocytosis 

Figure 4: Glomerular protein handling: scientific-historical timeline. Timeline summarizes major events that comprise the history of knowledge in glomerular protein 
handling. Cell types are characterized with different colors: Blue: podocytes; Black: mesangial cells; Red: endothelial cells; Green: parietal epithelial cells (PECs).

and delivered to early endosomes, where ARH recruits dynein and 
facilitates vesicular transport of megalin along microtubules toward 
the endocytic recycling compartment. Megalin recycles from this 
compartment back to the plasma membrane via the slow recycling 
pathway. In the absence of ARH, there is a switch to fast recycling of 
megalin-containing vesicles to the plasma membrane directly from 
early endosomes [51]. Dab2 and ARH are not only crucial for megalin 
trafficking, but also for the endocytosis of the CUBAM complex, since 
AMN provides the two signals that potentially allow the endocytic 
process via both adaptor proteins [53].

ClC-5: The Cl-/H+ antiporter ClC-5 is primarily expressed in 
proximal tubular cells, in cortical collecting duct α intercalated cells 
and in the thick ascending limb of Henle’s loop. Recently, this channel 
was demonstrated to be expressed also at glomerular level, in particular 
in podocytes [54]. In proximal tubular cells, it is predominantly 
located in intracellular subapical endosomes, which are involved in 
the endocytic reabsorption of LMW proteins and albumin that have 
passed the glomerular filter (Figure 3). ClC-5 is expressed on early 
endosomes, where it co-localizes with the V-type H+-ATPase and 
endocytosed protein, leading to an efficient intraluminal acidification 
[55-58]. Two independent groups demonstrated that ClC-5 functions 
as a Cl-/H+ antiporter when activated by positive voltages [59,60]. A 
small portion of the ClC- 5 channels is also located on the cell surface, 
where it is thought to mediate plasma membrane chloride currents 
[55-57,61], or to participate in the macromolecular complexes at 
plasma membrane level deputed to LMW proteins and albumin 
endocytosis [62].

Virtually all the components of the macromolecular complex 
may lose their function and cause a complete or partial renal Fanconi 
syndrome. Renal Fanconi is a syndrome of inadequate reabsorption 
in the proximal tubules. It can present with various heterogeneous 
manifestations depending upon the causes underlying the disease 
(e.g. gene mutations, diabetes, infections or heavy metals toxicity) 
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[63]. Collagen vascular disorders and interstitial nephritis can be 
seen and it is also not uncommon a presentation with nephrolithiasis, 
nephrocalcinosis and LMWP [63]. Although proximal tubulopathies 
are consequences of injury or diseases not primarily involving the 
kidney, they may also be due to genetic mutations in proteins of the 
uptake process. In next paragraph we discuss the principal proximal 
tubulopathies of genetic origin.

Hereditary tubulopathies: The rare, autosomal recessive disorder 
Donnai–Barrow syndrome (DBS) is caused by mutations in LRP2 
gene [64] (Table 2). The syndrome is characterized by proteinuria, 
a distinct facial appearance, along with functional defects such 
as high-grade myopia, sensorineural hearing loss, developmental 
delay, and in some cases agenesis of the corpus callosum, congenital 
diaphragmatic hernia, and omphalocele or umbilical hernia [41]. 
Normal renal function was reported in most DBS patients; however, a 
progressive decline in estimated glomerular filtration rate associated 
with evidence of focal glomerulosclerosis have been reported [65]. 
A rare autosomal recessive inherited defect in cubilin function 
has been described as Imerslund- Grasbeck syndrome (IGS) or 
megaloblastic anemia 1 caused by mutations in either CUBN or AMN 
gene [66,67]. The condition is characterized by B12 deficiency due to 
impaired intestinal absorption and proteinuria. The LMWP in most 
IGS patients is consistent with defective proximal tubule reabsorption 
and with observations in cubilin-deficient mice. Recent studies have 
characterized proximal tubule endocytic function in patients with 
CUBN or AMN mutations presenting LMWP, displaying a defective 
expression or apical targeting of cubilin [41]. Recently, intermittent 
nephrotic-range proteinuria without evident megaloblastic anemia 
was reported in a pair of siblings harboring a deletion in the CUBN 
gene [68].

Mutations in the CLCN5 gene are the main cause of Dent’s 
Disease [69-71], an X-linked renal disorder characterized by LMWP 
and variable presence of hypercalciuria, nephrocalcinosis and/or 
nephrolithiasis [72-74]. Two ClC-5 KO mouse models reproduced 
the human proteinuria and revealed defective endocytosis by the 
proximal tubule [69]. Furthermore, Dent’s disease patients display a 
significant reduction of cubilin and megalin expression in proximal 
tubular epithelial cells, probably as a consequence of a disturbed 
intracellular trafficking of the receptors [44]. Growing number 
of reports described patients carrying CLCN5 mutations with 
nephrotic-range proteinuria, histological findings of Focal Segmental 
and/or global Glomerulosclerosis (FSGS) and episodic evidence of 
isolated proximal tubular dysfunction [75-80].

Lowe syndrome is a multisystem disorder caused by mutations in 
the OCRL gene which encodes OCRL-1, an inositol polyphosphate 
5-phosphatase [81]. The classic form of the oculocerebrorenal 
syndrome of Lowe is characterized by the triad of congenital cataracts, 
severe intellectual impairment, and renal tubular dysfunction with 
slowly progressive renal failure [82]. LMWP is a cardinal finding in 
Lowe syndrome and is observed in all patients. This condition reflects 
impaired megalin–cubilin receptor-mediated endocytosis in the 
proximal tubule [83].

Glomerular Protein Handling
Several studies have been done regarding the filtration barrier 

provided by the components of the slit diaphragm, but little attention 
has been paid to whether resident glomerular cells (podocytes, 
mesangial, parietal and endothelial cells) have the potential to handle 

plasma proteins [7,84-87].

The first evidence of the endocytic process at glomerular level 
was described by Yoshikawa et al. [88] in 1986 that reported the 
presence of vacuolations of the epithelial glomerular cells in children 
with nephrotic syndrome and focal segmental glomerulosclerosis. 
Subsequently, Eyre et al. [89] described and quantified an albumin 
endocytic function in podocytes both in vitro and in vivo, and Koop et 
al. [90] identified protein droplets in podocyte cell bodies and major 
processes in Dahl salt-sensitive rats. In puromycin aminonucleoside 
nephrotic rats, it has been demonstrated that albumin is filtered via 
other pathways beyond the slit diaphragm, which include endocytosis 
by endothelial cells, uptake by podocytes and entrapment in the 
paramesangium [91]. In Figure 4 we describe a timeline of the 
scientific-historical events that leaded to an increase of knowledge 
of the protein handling processes carried out by resident glomerular 
cells. In the following sections, we describe findings on protein uptake 
in podocytes, parietal epithelial, mesangial and endothelial cells.

Podocytes
Numerous studies using electron microscopy have shown 

increased numbers of protein- containing vesicles in podocytes under 
nephrotic conditions in which there is significant leakage of proteins 
across the GBM [92]. In addition, a study by Kinugasa et al. [93] 
observed an increased endocytosis of albumin by podocytes in vivo 
in a rat model of minimal change disease and that albuminuria was 
decreased after treatment of proteinuric animals with an antibody 
that blocks transcytosis.

It was demonstrated that the presence of free fatty acids (FFAs) 
associated with serum albumin stimulated macropinocytosis in 
cultured podocytes. The Authors suggested that the response to 
FFAs may function in the development of nephrotic syndrome by 
amplifying the effects of proteinuria [92]. Furthermore, albumin 
exposure at levels comparable to what is found in the urine of patients 
with nephrotic syndrome, increases cell death, pro-inflammatory 
cytokines and pro-apoptotic pathways in a cultured podocyte-like 
cell line [94].

Evidences are emerging that podocytes are able to endocytose 
proteins such as albumin using kinetics consistent with a receptor-
mediated process. Pawluczyk et al. [95] demonstrated that receptor-
mediated endocytosis of albumin by podocytes was regulated by 
the fatty acid moiety, although some of the detrimental effects were 
induced independently of it. Previously, it was demonstrated that 
human podocytes express megalin and cubilin both in vivo and 
in vitro [39,40]. In addition, our group revealed that ClC-5 was 
expressed in human glomeruli of normal and proteinuric kidneys, 
in particular in podocytes [54]. Intriguingly, ClC-5 was found to be 
overexpressed in glomeruli of diabetic nephropathy and membranous 
glomerulonephritis patients both at mRNA and protein level 
suggesting a role for this protein in albumin endocytosis by podocytes 
[54]. Recently, it was confirmed the presence of albumin-containing 
vesicles, which co-localized with megalin, in podocin-positive cells of 
Ang II–infused rat kidneys. Additionally, the podocyte endocytosis 
of albumin was markedly reduced in the presence of gentamicin, a 
competitive inhibitor of megalin-dependent endocytosis [96].

Shank2, a scaffolding protein that binds proteins involved in 
modulating actin dynamics and endocytosis regulation, was also 
demonstrated to be required in albumin endocytosis by podocytes 
[97]. In facts, knockdown of SHANK2 in cultured human podocytes 
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decreased albumin uptake. The Authors also demonstrated that 
Shank2 knockout mice had significantly decreased expression 
and altered localization of caveolin-1 in podocytes suggesting that 
disruption of albumin endocytosis in Shank2 knockouts is mediated 
via caveolin-1 since caveolin-1 is well-known to be required for 
albumin endocytosis in cultured podocytes [97].

Podocytes both degrade and transcytose albumin. Studies 
in other cell type have found that both clathrin-mediated and 
caveolae-mediated endocytosis can deliver albumin to the lysosomal 
compartment [98-100]. Some data suggested the involvement of 
lysosomes in the processing of endocytosed albumin in podocytes. 
In fact, it has been found that rat podocytes may degrade albumin 
in lysosome-like acidified vesicles as it was already demonstrated in 
cultured human urine-derived podocyte-like epithelial cells [96,101]. 
The Authors disclosed that lysosomes were involved in the processing 
of endocytosed albumin in podocytes, and lysosomal dysfunction 
could contribute to podocyte injury and glomerulosclerosis in 
albuminuric diseases. Moreover, they suggested that modifiers 
of lysosomal activity may have therapeutic potential in slowing 
the progression of glomerulosclerosis by enhancing the ability of 
podocytes to process and degrade albumin [101].

Evidences of a preferential uptake by podocytes at the apical 
membrane, which faces the urinary space, would suggest that 
albumin uptake in these cells mirrors that by proximal tubules and 
serves to recover albumin that leaks across the glomerular filtration 
barrier and enters the urinary space [102]. Same Authors suggested 
the hypothesis that podocytes were actively engaged in clearing 
large serum proteins from the GBM-podocyte interface since they 
demonstrated podocytes’ ability to perform polarized uptake of 
albumin from the basal membrane along with the capacity of these 
cells to release full length albumin back into the extracellular space 
[102].

Parietal Epithelial Cells
Podocytes are not the only cell type involved in albumin uptake 

at glomerular level. Parietal Epithelial Cells (PECs) are positioned 
between the main glomerular filtration barrier and the proximal 
tubule and they are considered to be in a prime position to potentially 
act as a sensor for kidney health [86]. Recently, the Shankland group 
proposed the hypothesis that an important function of PECs was 
to restrict protein in the glomerular ultrafiltrate to the confines of 
Bowman’s space, thereby preventing protein from passing into the 
extraglomerular space [103]. Moreover, they described a model in 
which whenever there was an increased permeability of the glomerular 
filtration barrier (due to injury to the endothelial cell, GBM, and/or 
podocyte), the increased filtered proteins were handled by various 
mechanisms, including not only the uptake by proximal tubular 
cells but also by podocytes and PECs. This mechanism leaded to an 
inflammatory response, recognized as periglomerular inflammation 
and ultimately fibrosis [103]. In 2012 the same group showed that 
PECs were able to internalize albumin in normal and overload 
conditions. Furthermore, they observed an increase of the apoptotic 
process in the presence of an excess of protein uptake, process which 
was ameliorated by increasing ERK1/2 phosphorylation [86].

Recently, albumin was identified as a signaling molecule that can 
stimulate MMP-9 production by activated glomerular parietal cells, 
indicating that MMP-9 may play an important role in PEC migration 
and podocyte dysfunction during the development and progression 
of diabetic nephropathy [104]. Nevertheless, the mechanisms 

involved in albumin handling and whether this eventually leads to 
proliferation, or trans-differentiation remains to be delineated [105].

Mesangial Cells
Mesangial Cells (MCs) are well-known to be the glomerular 

structural cells for their role in synthesis and assembly of the 
mesangial matrix, which in turn regulates the viscoelastic and 
hydraulic properties of the mesangium [106,107]. Subsequently, 
these cells have become increasingly recognized as multifunctional 
cells capable of mediating glomerular disease.

Although it is clear that glomerular resident macrophages play 
a major role in handling macromolecules and immune complexes, 
there are also evidences that cultured MCs have specific uptake 
mechanisms for macromolecules and immune complexes, exhibiting 
macrophage like qualities [107,108]. The macromolecular uptake 
by cultured MCs was studied by use of transmission electron 
microscopy, identifying a mechanism involving a typical coated 
vesicle mechanism with delivery of the gold particles to endosomes 
and eventually phagolysosomes. Moreover, the pretreatment with 
cytochalasin B (a mycotoxin which inhibited network formation 
by actin filaments) virtually prevented endocytosis of fresh serum 
particles, indicating active participation of the cytoskeleton [109].

Glomerular Endothelial Cells
Glomerular Endothelial Cells (GECs) are highly specialized 

cells with regions of attenuated cytoplasm punctuated by numerous 
fenestrae [110]. GECs are the first layers of the glomerular filtration 
barrier and the key regulators of glomerular microvascular 
permeability even though podocytes are absent [111]. Historically, 
GECs were considered as passive actors in the proteinuria pathogenic 
process due to the close association between endothelial dysfunction 
and microalbuminuria [112]. It was already demonstrated the 
presence of an active trafficking of vesicles containing albumin from 
the luminal to abluminal side of the endothelial cells, predominantly 
through caveolae-mediated transcytosis [113]. Furthermore, it was 
demonstrated the presence of a caveolae-mediated endocytosis 
in GECs, with a significant upregulation of albumin transcytosis 
by high glucose concentration but not by mannitol, excluding the 
potential effect of osmotic pressure [114,87]. Notably, it was already 
reported the expression of the ClC-5 exchanger in human coronary 
and aortic endothelial cells [115], but its presence in GECs is not yet 
demonstrated.

Conclusion
Proteinuria has been recognized as an independent risk factor 

for both renal failure and cardiovascular disease. In this review we 
have reported some evidences regarding the mechanisms by which 
tubular and glomerular cells can lose and rescue proteins. We focused 
our attention on the protein uptake machinery principally studied at 
proximal tubular level (LRP2, Cubilin, AMN, Dab2, ARH and ClC-5) 
and on recent discoveries about protein handling in the glomerulus. 
The knowledge scenario on protein uptake by the glomerular 
compartment had a burst in the last few years thanks to the possibility 
to have available immortalized culture of different glomerular cell 
types.

Taken together, these studies underline the ability of glomerular 
cells to endocytose albumin and suggest mechanistic insight into 
cellular mechanisms of protein handling. These evidences indicate 
a new role at glomerular level for the well-known tubular uptake 
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machinery in the progression of the renal disease, supporting the idea 
of a partnership between tubular and glomerular cells in albumin 
uptake, via the same way of internalization.
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