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Editorial
Mesenchymal Stem Cells (MSCs) represent one of the most promising stem cells for regenerative 

medicine. As the most widely used stem cells for clinical trial, MSCs are able to differentiate into 
cartilage, bone and fat. Chondrogenesis is the process in which multipotent MSCs differentiate 
into chondrocytes to form cartilage, which involves recruitment, migration and condensation 
of mesenchymal stem cells, chondrocytes differentiation and deposition of cartilaginous Extra 
Cellular Matrix (ECM), resulting in the formation of cartilage and bone [1]. Chondrogenesis is 
delicately regulated by various signaling pathways in a temporal-spatial manner. Although MSCs 
have been studied for over 50 years, some gains in the understanding of the molecular basis 
underlying cartilage differentiation have been made, relatively limiting genetic factors involved 
in chondrogenesis have been identified, and gene network of chondrogenesis remains poorly 
understood. It is well known that Sox9 is master regulator of chondrogenesis [2,3]. Sox9 is highly 
expressed in mesenchymal stem cells, the proliferating and pre-hypertrophic chondrocytes but 
declines in the hypertrophic chondrocytes, suggesting that Sox9 plays a critical role in initiating and 
promoting early chondrocytes but repressing later maturation of chondrocytes [4,5]. Mutations 
in human Sox9 cause campomelic dysplasia, which displays abnormalities in cartilage formation 
[2,3]. Sox9 exerts its effects on chondrogenesis by directing the expression of chondrocytes-specific 
genes such as COL2A1, COL9A1, COL11A1 and Agc1 [6-9]. Expression or transcriptional activity 
of Sox9 is delicately regulated by upstream factors to regulate chondrogenesis. Overexpression of 
ZNF145 improves chondrogenesis whereas knockdown of ZNF145 slows down chondrogenesis, 
ZNF145 overexpression up-regulates Sox9 but Sox9 overexpression does not up-regulate ZNF145, 
indicating ZNF145 regulates chondrogenesis as an upstream factor of Sox9 [10]. However, how 
ZNF145 regulates Sox9 is still not fully understood. Knock down of Estrogen-Related Receptor 
alpha (ESRRα) decreases chondrogenic genes, including Sox9. It was shown that ESRRα directly 
binds to Sox9 to regulate its expression and cartilage development [11]. As a Nuclear Factor kappa 
B (NF-kB) member, RelA is co-localized with Sox9 in the limb cartilage. RelA is shown to induce 
chondrogenesis by binding to human Sox9 promoter [12]. Long non-coding RNA (lncRNAs) and 
microRNAs are also involved in regulation of chondrogenesis. lncRNAs, LOC102723505 (ROCR) 
is expressed with chondrogenic genes, its depletion reduces cartilage-specific gene expression 
including Sox9, leading to incomplete matrix component production. Overexpression of Sox9 
rescues impaired chondrogenesis by ROCR depletion, suggesting ROCR is an upstream factors 
of Sox9 [13]. The expression or transcriptional activity of Sox9 is also regulated by cofactors to 
regulate chondrogenesis. L-Sox5 and Sox6 have been shown to be essential transcriptional partners 
of Sox9 to enhance Sox9 activation of chondrocytes-specific genes during chondrogenesis. Sox5 
and Sox6 double knockout mice display severe cartilage defects [14]. Sox5 and Sox6 are undetected 
in Sox9 conditional-deficient mice, indicating Sox5 and Sox6 are downstream factors of Sox9 
[15]. PGC-1α directly interacts with Sox9 to promote Sox9 dependent transcriptional activity as a 
transcriptional co activator of Sox9 [16]. Znf219 acts as a transcriptional partner of Sox9 to enhance 
the transcriptional activity of Sox9 on the Col2a1 gene promoter [17]. Wwp2 interacts physically 
with Sox9 to regulate Sox9 transcriptional activity via its nuclear translocation [18]. P54nrb is co-
localized with Sox9 protein in nuclear para-speckle bodies, which physically interacted with Sox9 to 
enhance Sox9 dependent transcriptional activation of the Col2a1 promoter [19]. Jun and Sox9 co-
bound and co-activated a Col10a1 enhancer to promote hypertrophic gene expression [20]. Besides 
chondrocyte specific genes, Sox9 also regulates other chondrocytes related genes. It is shown that 
CTGF/CCN2 stimulates chondrocytes proliferation and maturation. The loss of Sox9 leads to the 
decrease in CTGF expression. Further study demonstrates that SOX9 binds to -70/-64 region of 
the Ctgf promoter, suggesting Ctgf is the direct target gene of SOX9 in chondrocytes [21]. MiR-
140 is a cartilage specific microRNA that regulates cartilage development and homeostasis. Sox9 
promotes miR-140 expression by binding to its promoter region [5]. With the development of 
state-of-the-art techniques and more efforts put in the field, more genes regulating chondrogenesis 
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have been identified. However, little is known about gene network 
of chondrogenesis. Chondrocytes are embedded in cartilage matrix, 
which make it hard to obtain enough cells for the use. ChIP-Seq is 
a powerful method to identify genome wide DNA binding sites 
for transcription factors and other proteins. However, ChIP-seq 
is not well established in the field of chondrogenesis due to limited 
chondrocytes. To move forward, it is necessary to establish platforms 
requiring fewer cells in the field of chondrogenesis. In addition, 
identification of more regulators involved in chondrogenesis will 
further our understanding toward regulation of chondrogenesis. 
Understanding of gene network of chondrogenesis will help us 
develop more effective therapies for cartilage regeneration and 
treatment of cartilage diseases.
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