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Editorial
Alzheimer’s disease (AD) and diabetes mellitus are chronic disorders associated with aging. 

They represent a looming crisis with increasing health care and economic demand worldwide. 
Extensive literature exists linking the development of AD to diabetes including dysregulated glucose 
metabolism and mitochondrial dysfunction. This review summaries evidence demonstrating 
mitochondrial dysfunction and cellular bioenergetics plays a central role in the etiology of AD. 
Additionally, the review also discusses the possibility of protecting mitochondrial function as an 
alternative therapeutic approach for treating AD. 

Mitochondrial Dysfunction in Alzheimer’s Disease
Alzheimer’s disease (AD) is the leading cause of dementia characterized by progressive loss 

of memory and cognition [1]. The two pathological hallmarks of AD are formation of amyloid 
plaque from aggregated amyloid-β-peptide (Aβ) and formation of neurofibrillary tangles from 
hyperphosphorylated tau. The Alzheimer’s Association report pointed out that one in nine people 
over the age of 65 has AD and it represents a looming crisis with increasing health and economic 
demand worldwide [1]. Despite the identification of mutations related to familial AD (FAD), the 
cause of sporadic AD remains elusive and controversial [2,3]. Similarly, Type 2 Diabetes Mellitus 
(T2DM), another prevalent disorders characterized by hyperglycemia, insulin resistance and relative 
insulin deficiency, is associated with obesity and often aging [4,5]. 

Epidemiological studies have indicated that AD and T2DM represent interdependent risk 
factors for each other [2,6-8]. Using global metabolomics profiling, Trushina et al. [9] demonstrated 
that metabolic changes associated with obesity and diabetes were present in plasma of AD patients. 
Further, impaired glucose tolerance and insulin resistance, the major pathologies of diabetes, 
parallel worsening of dementia in diabetic [10] and AD [11-13] patients implying a bidirectional 
relationship between the diseases. The level of clinical debility in AD correlates closely with the 
degree of reduced brain metabolism, which precedes the onset of the overt clinical symptoms 
by decades [14,15]. Diminished brain metabolism in clinical AD is a prominent abnormality 
contributing to hyperphosphorylation of tau and Aβ accumulation [16,17]. Multiple underlying 
mechanisms have emerged that link the development of diabetes with AD including abnormal 
protein processing, impaired insulin signaling, dysregulated glucose metabolism and mitochondrial 
dysfunction [9,18-22]. Epidemiological, clinical and experimental studies have demonstrated that 
defective bioenergetics, altered Krebs cycle and mitochondrial dysfunction play a central role in the 
development of AD, parallel to the accumulation of Aβ, and represent a functional link between 
AD and diabetes [2,9,23,24]. Mitochondria dysfunction [19-21] have been proposed as an early 
event in the etiology of both disorders [18,22]. Owing to the profound socioeconomic impact of 
AD and diabetes, understanding the mechanisms that interconnect these diseases is essential for the 
development of novel therapeutic interventions.

Mitochondria are the master regulators of cellular energetic homeostasis [25,26]. Mitochondrial 
bioenergetics deficit increases reactive oxygen species (ROS) production, which induce cellular 
damage [27] contributing to neurodegeneration and cell death [28,29]. The energy metabolism, 
Krebs cycle and mitochondrial function were significantly affected in patients with mild cognitive 
impairment (MCI) and AD [9] and in multiple animal models of FAD [30-33] suggesting that loss 
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of bioenergetics plays a central role in the etiology of AD. In support 
of this, Bubber et al. [23] demonstrated that loss of mitochondrial 
enzymatic activity in the brain tissue isolated from autopsy-confirmed 
AD patients correlated with severity of dementia. Moreover, sucrose 
diet can induce mitochondrial abnormalities in wild-type (WT) mice 
brain similar to those found in transgenic mice expressing FAD genes 
[34]. Additionally, sucrose diet also increased production of amyloid 
beta (Aβ) peptides in WT mice [34], suggesting that conditions 
leads to diabetes can exacerbate the onset of AD. Conversely, similar 
observations were found in animal model of FAD, where declined 
mitochondrial function was associated with increased glucose and 
insulin intolerance, age and Aβ deposition [34-37]. 

The shared mechanism between AD and diabetes has motivated 
many to explore the feasibility of common pharmacotherapy for 
T2DM and AD [38-43]. One of the most commonly prescribed 
diabetic drugs is metformin. Metformin is an orally active biguanide 
that helps to control blood glucose level. While the mechanisms 
of action are not completely understood, studies have shown that 
patients with T2DM and AD receiving metformin have a lower rate 
of cognitive decline [40,44,45]. Notably, other studies showed that 
metformin could increase intracellular Aβ level and T2DM patients 
under long-term treatment of metformin have increased risk of AD 
[41,46]. These controversial studies suggest that there is considerable 
challenge to develop drug for AD. A preclinical study by Zhang et al. 
[31] reported a tricyclic pyrone compound, CP2 that has dual effect 
on both Aβ and mitochondria. CP2 improves cognitive functions 
in multiple FAD mouse models through direct binding to Aβ. 
More importantly, CP2 also inhibit the function of mitochondrial 
complex I (NADH: ubiquinone oxidoreductase) by directly bind 
to the flavin mononucleotide (FMN) redox site. This action limits 
initial entry of electrons into the electron transport chain system 
thus prevents induction of oxidative stress or inflammation. To date, 
numerous attempts to treat AD by targeting Aβ have failed in human 
clinical trials. Thus, Zhang et al. [31] study represents an alternative 
therapeutic approach through interfering cellular bioenergetics and 
metabolism.

Even though AD and T2DM are traditionally considered 
independent disorders and are treated separately, extensive studies 
have showed that the disorders shared mitochondrial dysfunction as 
the common denominator. Therefore, therapeutic approaches that 
protect mitochondrial dynamics and function and simultaneously 
reduce Aβ deposition could delay the onset of the disease or reverse/
slow down the disease progression in both AD and diabetes.
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