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Background
Testicular cancer (TCa) is the most common cancer in young adult men with a mortality ratio of 

0.3/100,000 inhabitants. It represents 1% of male neoplasms and 5% of urological tumors, with 3-10 
new cases occurring per 100,000 males/per year. The most common subtypes of TCa are seminoma 
and non-seminoma germ cell. Seminoma TCa represents about 30% to 40% and non-seminoma 
rises to 50% to 60% of total TCa, and can be classified into embryo carcinoma, vitelin sack tumor, 
teratoma and coriocarcinoma [1,2].

In every case of TCa, surgery is the initial treatment (inguinal orchiectomy). After that, usually 
the eligible treatment is chemotherapy with combinations of bleomycin, etoposide and cisplatin 
(bleomycin/etoposide/cisplatin (BEP) or etoposide/cysplatin (EP)), used as the front line treatment, 
depending on histology and risk. In the second line, a PIV (cisplatin, ifosfamide and vinblastine) 
scheme is usually used. These are quite successful treatments for patients with seminoma (all stages 
combined) and the cure rate exceeds 95% of the treated cases [2,3]. Despite the high cure rates, 
chemotherapy is a complicated topic, due to the high possibilities of presenting serious adverse 
effects. Historical studies have reported the following side-effects for antineoplastic chemotherapy 
used in TCa: nausea/vomit secondary malign neoplasms and leukemia, cardiovascular diseases, 
peripheral neurotoxicity, ototoxicity, nephrotoxicity, lung toxicity, hipogonadism, decreased 
fertility, psicosocial disorders and cognitive damage. While peripheral neurotoxicity can be produced 
by several drugs, ototoxicity is produced mainly by cisplatin [4]. Moreover, chemotherapy used for 
TCa treatment often causes myelosupression, giving rise to febrile neutropenia, hemorrhage and 
anemia (60%), where the risk of febrile neutropenia is around 5% to 25% after 3 cycles to 4 cycles 
of BEP or EP [5-7].

Inter-individual variations of chemotherapy drug-response can be partially explained by genetic 
variations in pharmacokinetic and/or pharmacodynamic factors, and raise a substantial clinical 
problem. On this regard, a drug that is well tolerated and causes a positive response in some patients 
may be ineffective, toxic or cause adverse drug reactions in others. Pharmacokinetic factors influence 
plasma and tissue drug concentrations while pharmacodynamic factors modify drug sensibility, 
conducting to higher or lower effects than expected due to influence in the presence of receptors or 
other pharmacological targets. Thus, response to chemotherapy of TCa (efficacy and safety) may be 
partly determined by gene polymorphisms involved in the pharmacology of cytotoxic drugs used in 
the treatment of TCa.

In this sense, pharmacogenomic research on TCa has been mainly focused on enzymes that 
control the metabolism, uptake and response to many clinically used drugs, including bleomicin, 
etoposide and platins. Therefore, considering that most of the antineoplastic drugs are metabolized 
by Cytochrome P450, and that variant alleles in these enzymes commonly affect drug effectiveness 
[8,9]. The study of these phase I and also phase II enzymes should be properly addressed, in order to 
contribute to clinically more effective treatments.

On the other hand, cancer`s therapy effectiveness depends partially on the ability of cancer 
cells to repair their DNA, therefore less active DNA-repairing enzymes in cancer cells may lead 
to an improve in response to chemotherapy. Conversely, a tumor process can be initiated, when 
normal cells present impaired capacity to repair DNA. Considering the aforementioned, several 
pharmacogenomic studies in some of the about 130 genes of DNA-repair enzymes have consistently 
demonstrated positive correlations between SNPs and differential cancer treatment outcomes [10-
12]. Over these studies, it has been demonstrated that polymorphisms more related to clinical 
response in DNA reparation enzymes and cancer patient’s outcomes are XPD Asp312Asn (rs 



Luis A Quiñones Annals of Urological Research

Remedy Publications LLC. 2017 | Volume 1 | Issue 1 | Article 10042

1799793), XPD Lys751Gln (rs 13181), ERCC1 8092C/A (rs 3212986) 
and ERCC1 118C/T (rs11615) [13].

Considering that BEP scheme is the world wide’s most used 
pharmacotherapeutic treatment for TCa, it is of great importance 
to focus new research programs on understanding inter-individual 
response to these drugs using the pharmacogenomic approach.

BEP Drugs
Etoposide is a plant alkaloid that inhibits topoisomerase II in the 

process of DNA synthesis; it has been successfully used as an anticancer 
drug in chemotherapy. Etoposide is cell cycle dependent and phase 
specific, affecting mainly the S and G2 phases. High concentrations of 
etoposide (> 10 µg/mL) produce lysis of cells incoming mitosis and 
a lower number of cells appear to be stopped on going into prophase 
[14]. The main macromolecular effect of etoposide is the breakage 
of DNA strands through DNA topoisomerase II inhibition and 
formation of reactive oxygen species [15]. It is known that etoposide is 
mainly metabolized in phase I by CYP3A4/5 and in phase II by GSTs 
and UGT1A1. Therefore, polymorphic variants of these enzymes 
appear to contribute to etoposide clinical response [16].

On the other hand, DNA repair enzymes are also important, both 
in sensitivity and resistance to etoposide in patients. Excision repair 
cross-complementary 1 (ERCC1) and/or ERCC1-XPF complex are 
key factors involved in the process of nucleotide excision repair 
induced by several drugs, including etoposide through p38 MAPK. 
This is associated to resistance to DNA damage-based chemotherapy 
[17,18].

Besides, platinum containing drugs, including cisplatin, 
are alkylating-like agents used in several types of cancer. Its 
pharmacological effect could be due to three different mechanisms 
of action: 1) induction of crosslinking of guanines in the DNA 
double helix, 2) fragmentation of DNA by alkylation of bases, and 
3) induction of erroneous base pairing that conducts to mutations. 
Contrary to etoposide, the action of cisplatin is cell cycle-independent 
[19] and its metabolic fate has not been completely elucidated. On 
this regard, there is little evidence that suggests this drug undergoes 
enzymatic phase II biotransformation mainly by GSTs and so 
these enzymes could be responsible for the variability on cisplatin 
response [20]. Moreover, GSTs, particularly GSPP1 appear to be a 
protective factor for cisplatin ototoxicity. The role of GSTM1 and 
GSTT1 polymorphisms need to be evaluated [4,21]. Additionally, 
platinum adducts are recognized by the cellular DNA repair system 
and resistance to platinum chemotherapy is observed by activity of 
either the nucleotide excision repair (NER), mismatch repair (MMR) 
or homologous recombination (HR) pathways. Mutations in key 
enzymes of these pathways result in sensitivity to platinum drugs [22]. 
Cisplatin pharmacogenomics has been studied in several cancers, 
including TCa, where various SNPs in NER have been investigated. 
For example, SNPs in ERCC1 and ERCC1 3’-NTR were found to be 
associated with improved overall survival. Cisplatin sensitivity has 
been associated with low expression of ERCC1 [13].

Finally, bleomicineis an antibiotic with antitumoral activity that 
selectively inhibits DNA synthesis by producing crosslinking of 
the DNA strand. High concentrations of bleomycin stop RNA and 
protein synthesis. In vivo bleomycin inhibits B and T lymphocytes 
and macrophage proliferation as well as γ-interferon, TNF-α and 
interleukin-2. Bleomycin hydrolase (BLMH) inactivates bleomycin 
[23]. It has been shown that the A1450G polymorphic site in BLMH 

gene (I443V) has clinical implicances in patients. de Haas et al. [24] 
gave strong evidence for the importance of BLMH pharmacogenomic 
studies in the treatment of patients with TCa, showing how the large 
overall difference in treatment outcomes can be attributed to a 
single SNP in BLMH [7]. Therefore, it seems quite understandable 
that efficacy and safety of bleomycin treatment can be influenced by 
polymorphisms in BLHM gene.

Final Considerations
Pharmacogenomic research is particularly focused on SNPs with 

high allele frequency that results in an altered response to drugs. 
In this sense, it is logical to assume that the variability in clinical 
response to anticancer agents could be due to tumor and host 
genetic factors. Thus, many association studies among SNPs in genes 
encoding for drug transport, uptake, metabolism, detoxification 
and DNA repair proteins and drug response, have been performed. 
The current challenge for personalized therapy of cancer is to define 
genetic profiles that help the prediction of a personalized response 
to drugs and the progression of the illness [21,25-30]. The answers 
to these hypotheses can be obtained only through case-control and 
prospective studies with pharmacogenomic basis.

Therefore, considering the current knowledge regarding the 
metabolism and response to chemotherapeutic agents, and based on 
the importance of this area in clinical practice, our research group has 
investigated the molecular basis of variable clinical response to the 
chemotherapeutic treatment in TCa patients, as a model (Fondecyt 
Grant No. 1140434). Our preliminary results show some pharmagenes 
(BLMH, ERCC1, CYPs) as good biomarkers of prognosis (data not 
published). TCa patients are convenient research subjects, because 
testicular tumors allow the analysis of transformed cells by removing 
a routine sample with low injury to the patient. Moreover this is a 
cancer with good prognosis after surgical and pharmacological 
treatment, which allows us to know efficacy and safety of drugs 
with at least one-year follow-up. Thus, we encourage researchers to 
develop more studies on chemotherapy of testicular cancer and other 
tumors to support the usefulness of SNPs as biomarkers in order to 
improve pharmacotherapeutic response.

We strongly believe that the study of pharmacogenomics of TCa 
will help to define the potential clinical use of genetic polymorphisms 
in pharmagenes as biomarkers for cancer patients’ response and 
inter-ethnic differences, not only for single polymorphisms but also 
the function of simultaneous polymorphisms in each patient exposed 
to chemotherapy [31]. Besides, the role of environmental factors as 
risk and prognosis modifier factors should be evaluated.
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