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Abstract
Chitin is the most abundant biopolymer in the oceans and is present in both eukaryotic and 
prokaryotic organisms. In the ocean diatoms are the most species-rich phytoplankton and some 
species have proved synthesise chitin. BLAST in chitin synthase genes into the Marine Microbial 
Eukaryotic Transcriptome Sequencing Project database, which contains 188 diatom transcriptomes 
with more than 60 different species, we found 46 sequences from 15 different species. This finding 
reveals that, albeit not all the diatom species identified are proved to synthesise chitin, they do 
possess the molecular toolkit to synthesise chitin.

Abbreviations 
ScCHS: Saccharomyces cerevisiae chitin synthase. Phatri: Phaeodactylum tricornutum CCMP 

1055; Chopin: Corethronpennatum strain L29A3; Tri dub: Triceratium dubium strain CCMP147; 
Minutocellulus polymorphus strain CCMP3303; Stacon: Stauroneis constricta strain1120; Craaus: 
Craspedostaurosaustralis, strain CCMP3328; Odosin: Odontella sinensis strain Grunow 1884; 
Thapse: Thalassiosira pseudonana strain CCMP 1335; Cycmen: Cyclotella meneghiniana strain 
CCMP 338; Skejap: Skeletonema japonicum strain CCMP 2506; Skegre: Skeletonema gretae strain 
CCMP 1804; Thaoce: Thalassiosirao ceanica strain CCMP1005; Tha ant: Thalassiosira antarctica 
strain CCMP982; Detcon: Detonula confervacea strain CCMP353; Thawei: Thalassiosira weissflogii 
strain CCMP1336. On the right-hand side, sequence logo for each clade is reported.

Short Communication
Chitin is the most abundant polymer in the oceans [1] and is spread over numerous taxa in 

the eukaryotic and prokaryotic kingdoms [2]. It serves mainly a protection function like in fungi, 
yeasts and arthropods [3,4]. It is composed of N-acetyl glucosamine monomers polymerised 
by chitin synthase enzymes [5]. Chitin synthase are large enzymes that belong to the family 2 
glycosyltransferases (GT2) which include many other enzymes that serve similar functions like 
cellulose synthase [6].

Diatoms are among the plethora of organisms showing chitin synthase pathways and it has been 
hypothesised that chitin is involved in cell wall processes [7].

Diatoms are world-wide distributed unicellular protist belonging to Stramenopiles that 
colonised every humid environment from marine to brackish and fresh waters and also hypogean 
extreme habitats. Diatoms are the most species-rich phylum in marine phytoplankton with more 
than 14 thousand species described [8] to date and an extremely wide array of shapes and habits 
[9]. This group of unicellular protist are characterised by a bipartite external cell wall composed of 
amorphous orthosilicic acid, called the frustule. The two parts of the frustule (valves) are different 
in size and fit one onto the other like a lid and a box. Because of this peculiar cellular structure, 
diatoms have evolved atypical cell and life cycles [10-12]. Besides their proved ecological relevance 
[13] diatoms are getting economically important because of the interest that biotechnology 
have demonstrated towards these organisms [14]. Systematically, diatoms belong to the phylum 
Bacillariophyta [15] that is in turn divided into three classes [8], Bacillariophyceae [16], mainly 
characterised by bilateral cell ornamentation symmetry) referred to as pennate diatoms; classes 
Coscinodiscophyceae [9] and Mediophyceae [17], which include cells recognisable by a radial 
organization of cellular processes and ornamentations. These two classes altogether are referred 
to as centric diatoms. Among diatoms, the only genera that present clear production of chitin are 
Thalassiosira and Cyclotella (Class Mediophyceae). These species produce long chains (colonies) by 
joining adjacent cells via a chitin thread extruded through cellular processes called the fultoportulae 
[18,19]. Indeed, chitin was found to be associated to the silica cell wall in T. pseudonana [20,21]. It 
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was also demonstrated that in silica starvation Skeletonema costatum 
(Class Mediophyceae) synthesise 6s chitin [21]. In vivo and in vitro 
chitin interacts with silica [22,23] and possibly it is involved in 
frustule formation. Recently it has been shown that some diatoms, 
other than Thalassiosira and Cyclotella species, have the molecular 
tool kit to synthesise chitin [2,21] but the number of species tested 
is only a small representation of those inhabiting our planet. For this 
reason in the present work we searched for chitin synthase genes in 
the Marine Microbial Eukaryote Transcriptome Sequencing Project 
[24,25] database. The MMETSP contains a total of 678 transcriptomes 
from marine organisms, of which 188 are diatoms with more than 60 
different species.

The amino acid sequence of the Saccharomyces cerevisiae 
chitin synthase proteins, ScCHS1 ScCHS2 and ScCHS3, were used 
as query for a tblastn search in MMETSP database. For one or two 
representatives of each diatom genus with a good hit (e-value cut-off 
10-10), all the transcripts were downloaded, translated and blasted 
in Pfam, UniProt and HMMER in order to verify the presence of 
chitin synthase domains [21]. Sequences(Supplementary file 1) were 
visualized in the BioEdit Sequence Alignment Editor 7.0.9.0 [26] 
software and aligned by Clustal W. The alignment was manually 
curated. Maximum Likelihood (ML) and Bayesian phylogenetic 
analyses were performed using MEGA7 [27,28] software respectively. 
The LG (Le and Gascuel, 2008) +G+I evolution model was chosen 
for ML by running modeltest [29] in MEGA7. The analysis was 
supported by 10,000 bootstrap replicates. For Bayesian inference, 
four parallel and totally independent Markov Chain Monte Carlo 
(MCMC) runs were carried out on data matrices. Eight chains (seven 
hot and one cold) drove each analysis. Ten million generations 
(sampling frequency every 100) were set. The analyses were forced 
to jump among the evolutionary models for protein sequence 
alignments implemented in the software. The first 25% of the samples 
from the cold chain were discarded in order to stabilise the algorithm, 
reduce the variability among results and have a more robust analysis. 
Consensus tree with posterior probability (PP) of each node and 
branch length are reported after a 50% majority-rule consensus. 
Phylogenetic trees were visualised and edited in the FigTree (Tree 

Figure Drawing Tool Version 1.4.2) software (http://tree.bio.ed.ac.
uk/).

All the putative diatom chitin synthase proteins investigated here 
contained the two main functional sites identified by [30], i.e. the 
acceptor-deprotonation (A/D) and the catalytic sites, corroborating 
the identification as putative chitin synthases. Interestingly, 
among MMESTP BLAST results most of the diatom species that 
produced a good hit belonged to the Mediophyceae class. Only two 
Coscinodiscophyceae (Choretronpennatum and Triceratium dubium) 
and two Bacillariophyceae (Craspedostaurosaustralis and Stauroneis 
constricta) representatives were present (Figure 1). In the genome 
of the pennate diatom Phaeodactylum tricornutum [31] two genes 
are annotated as GT2 (protein ID: 44759, chromosome 5:155409-
158214; 37908, chromosome 14:373305-376179) and in previous 
analyses [21] both clustered in a basal position to all the other diatom 
chitin synthase P. tricornutum protein sequences are quite divergent 
from the other diatoms (with an average sequence identity of around 
9%). Moreover, these two sequences show the highest identity with 
ScCHS1 and ScCHS2 and the lowest with ScCHS3. Consistently, 
blasting. cerevisiae chitin synthases in the P. tricornutum genome, 
only ScCHS1 and ScCHS2 produced sound hits. Interestingly, P. 
tricornutum sequences present the A/D and the catalytic sites but are 
the only sequences showing a Proline instead of a Leucine in position 
+2 respect to the A/D site.

Noteworthy, apart from the two members of the class 
Bacillariophyceae, no other pennate diatoms produced any sound 
hits, although numerous transcriptomes from different species are 
present in the MMESTP database. In order to further verify this 
result, a BLAST search was performed in the genome and in the 
transcriptome of the pennate diatom Pseudo-nitzschia multistriata 
[32] and in the genomes of the congeneric P. multi-series and the 
very closely related Fragilariopsis cylindrus; no hits were found in 
any of the datasets. This finding corroborates the BLAST search in 
MMESTP where 14 transcriptomes for six different Pseudo-nitzschia 
and eight from Fragilariopsis kerguelensis are present.

Our phylogenetic analyses showed that most of the diatom 
chitin synthases robustly (PP 0.97) cluster together in a separate 

Figure 1: Bayesian phylogenetic tree of the CHS protein sequences (split frequency σ: 0.001).
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clade with ScCHS3 while P. tricornutum and Corethronpennatum 
(Calss Coscinodiscophyceae) cluster with ScCHS1 and ScCHS2. 
This finding, corroborated by sequence inspection, suggests that this 
centric species in fact shares the same genes with P. tricornutum. 
Surprisingly, the pennate species Craspedostaurosaustralis and 
Stauroneis constricta cluster in the ScCHS3 clade. This clade clustered, 
in a series of basal bifurcations, Bacillariophyceae, Mediophyceae 
and Coscinodiscophyceae. All the other Mediophyceae sequences 
grouped in two separate well supported clades. These proteins can be 
the result of an ancient gene duplication that in this class promoted 
the use of chitin in the cell wall. The distribution of orthologous 
or paralogous CHS3 genes over the species is not constant. In fact, 
Triceratium dubium presented two CHS3 while Odontella sinensis 
had four. All the other species (apart the pennate) have at least two 
sequences clustering in one clade and at least one in the other.

The role of chitin synthases in diatoms is not clear, especially in 
those species that do not synthesise chitin. Functional studies would 
be needed to unravel this issue also benefitting of the progresses in 
molecular techniques available for diatoms [33-38]. The analyses 
involved amino acid 46 sequences and 1034 positions with gaps. Line 
color indicates Bayesian posterior probability (color bar range 0.6 – 
1.0). Close to each node the posterior probability and the bootstrap 
value (where applicable) are reported. Sequence logos for the A/D and 
the catalytic sites are reported for each clade. Sequence ID color code: 
green: class Bacillariophyceae; red: class Coscinodiscophyceae; blue: 
class Mediophyceae. Protein ID (for P. tricornutum, T. pseudonana 
and T. oceanica) and transcript ID are reported after the species.
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