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Introduction
Multiple Myeloma (MM) is a hematological malignancy which occurs due to the unrestrained 

development of malign plasma cells in the Bone Marrow (BM), over 10% by definition [1]. MM 
cells adjust BM according to its necessity by changing various BM stromal cell types which result 
in ontogenesis, bone annihilation, and suppression of immune system. 80% to 90% of patients 
with MM suffer by these active bone diseases and it affects their quality of life and increases their 
mortality [2]. In almost all cases, MM is preceded by a premalignant disease such as Monoclonal 
Gammopathy of Undetermined Significance (MGUS) [3]. Genetic and epigenetic irregularities play 
significant roles in MM pathogenesis, which dedifferentiate malignant cells to a less mature state 
and lead to poor disease progression and drug resistance [4]. Chromosomal abnormalities such as 
Copy-Number Variations (CNVs), translocations, and mutations are critical prime occurrences for 
the initiation of MM [5]. Additionally, DNA methylation and histone modifications also contribute 
to MM disease progression, clonal heterogeneity, cellular plasticity, and drug resistance [5,6]. It has 
been well explained that abnormal histone methylation plays a vital role in the pathological process 
of MM, as high levels of Histone Methyltransferases (HMTs) and Demethylases (HDMs) are found 
in MM patients with genetic mutations [7].

Numerous treatment options have entered the landscape of myeloma therapeutics in the last 
few years, remarkably extending Progression-Free Survival (PFS) and Overall Survival (OS) [8]. 
Treatment of MM includes IMIDs (Immunomodulatory agents) and PIs (Proteasome Inhibitors), 
Bi-specific T-cell Engagers Antibodies (BiTEs), Antibodies Drug Conjugates (ADCs), Chimeric 
Antigen Receptor (CAR)-T cells [9-11], and a series of chemotherapeutic molecules coupled or 
not with Autologous Stem Cell Transplantation (ASCT) [12,13]. Daratumumab, an antiCD38 
antibody initially approved for relapsed/refractory patients is now in the frontline treatment for 
newly diagnosed multiple myeloma patients. Recently, B-Cell Maturation Antigen (BCMA)-
targeted antibody-drug conjugate (belantamab mafodotin) [14], and BCMA-targeted CAR-T cell 
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Abstract
The innovative speed in Multiple Myeloma (MM) therapy is remarkable in recent years with 
the arrival of monoclonal antibodies and approval of novel agents with new action mechanisms. 
Emerging therapies especially immunotherapy Chimeric Antigen Receptor (CAR)-T cells, Bispecific 
T-cell Engager Antibodies (BiTEs), Antibody-Drug Conjugates (ADCs), newer generations of 
Monoclonal Antibodies (MoAbs) and small molecule inhibitors/modulators have extended the 
survival of a patient, advancing with the goal of a cure. In this work, AI driven tools are used for 
multinomics (GSE156872) studies on the homosapiens and mus musculus. The transcriptomics 
data showed 37 downregulated genes (homosapiens) and 9 downregulated genes (mus musculus), 
which indicated them to be the potential targets for pathogenesis, diagnosis and treatment. 
Transcription Factor (TF) -gene interactions were seen for ID3, C3, CFBPD, ZNF267, hsr-mir-98- 
5p and RDGBRA human tumor genes whereas Esr1, Id4, Foxa1, mmu-mir-425-5p and mmu-mir- 
186-5p TF gene interactions were observed for mus musculus. The ChIP-seq analysis showed a 
lower peak of NSD2 in humans and higher in mus musculus. The different level of epigenetics in 
both (human, mice) indicated that the target might not be used for further analysis in mice for knock-
in and knock-out or further pharmacokinetics analysis. Integrated KEGG Pathways analysis from 
(DEGs-ChIP) data predicts carcinogenesis for humans and mus musculus. Drug-gene interaction 
predicted few approved drugs and immunotherapies for the personalized treatment of MM patients. 
Bioinformatics studies suggested a combination therapy, which is seen in clinical treatment as well.
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therapy (Idecabtagene vicleucel) [15] are approved for MM patients. 
The advance therapies using proteosome inhibitors and BCL2 
inhibitors or combination of drugs (bortezomib, carfilzomib) and/
or (lenalidomide, pomalidomide) with related transplantation of 
stem cell, alkylating drugs (melphalan) and/or glucocorticoids has 
increased the life expectancy of MM patients in past 15 years [16,17].

To understand the impact of previously recommended drugs and 
novel drugs therapies for MM, AI driven tools are used for Multiomics 
(transcriptomics, epigenetics) studies on the Homo sapiens and Mus 
musculus samples (GSE156872) of a published clinical studies [18] in 
diagnosis of MM.

The clinical studies explore the roles of Steroid Receptor 
Coactivator-3 (SRC-3) in response to treatment with proteasome 
inhibitors in myeloma cells. Furthermore, the underlying 
mechanisms of SRC-3-mediated chromatin remodeling and 
transcriptomic alterations, and evaluation of the efficacy of a newly 
developed SRC-3 inhibitor, SI-2, used in overcoming Bortezomib 
(BTZ) resistance in myeloma cells both in vitro and in vivo were 
studied. SI-2 disrupts the SRC-3 (NSD2) interaction, and ease SRC- 3 
degradation. SI-2 is considered for clinical use in MM as it affects the 
drug responsible genes and accordingly influences the survival genes 
[18]. (SRC-3) is an SRC/p160 coactivator family of three members: 
SRC-1/NCOA1, SRC-2/TIF2/GRIP1/NCOA2, and SRC- 3/AIB1/
NCOA3. SRC-3 is amplified and overexpressed in various human 
cancers. SRC-3 promotes cancer initiation, progression, and 
chemoresistance; incorporating nuclear hormone receptors (or other 
transcription factors) and numerous pathways of cancer-growth 
[19]. Recently a study suggested that SRC-3 is assumably a driver in 
chemoresistance as amplification of the NCOA3 gene is associated 
with initial chemoresistance in ovarian cancers [20]. Overexpression 
of SRC-3 is associated with tamoxifen resistance [21] and resistance 
to cytotoxic agents [22] in breast cancer, to platinum resistance in 
ovarian epithelial cancer [23], and suppression of SRC-3 protein 
levels to anticancer reagents for the treatment of prostate cancer and 
leukemia cells [24,25]. Yet there is no clear mechanism on how SRC- 
3 is involved with epigenetic regulators (NSD2) in drug resistance in 
MM.

The integration of different molecular multiomics datasets is 
used in a standardized way. Combination of epigenetic and RNA-
Seq data allows to identify the candidate genes and directly measure 
gene regulation and gene expression. This multidata approach is 
used to understand the mechanisms controlling interesting 
phenotypes and to uncover new regulatory elements for biomarkers 
and therapeutic targets. Various sequencing platform produce large 
multiomics data which offer a possibility to answer a lot of complex 
questions related to specific biological process. Limitations arise 
when there is a gap in the generated information. It often lead to 
noisy data with many unwanted divergent results and challenges are 
still remains to accurately analyse the extraordinary data volumes 
identifying true signals and understanding the combination and 
correlation of variable datasets [19].

Computational Details
In these studies, the relevant RNA-seq and ChIP-seq data is 

taken from the Gene Expression Omnibus database under accession 
number GSE156872 [26]. Out of total fourteen samples; eight single 
end samples (Organism: Homo sapiens, Mus musculus) was taken 
for RNA-seq analysis. Six paired end samples were taken for ChIP 

analysis; out of which there is 1 input, 3 treated and two untreated 
paired end samples. Each sample has (treated or untreated) a set of 
corresponding separate biological replicated condition.

Reads alignment and differential expression analysis
RNA-Seq reads with FASTQ files are uploaded in Galaxy server 

[27,28] for quality assessment. The FASTQC [29] tools are used to 
create a report of sequence quality and MultiQC [30] tools are used to 
check the quality results. Trimmomatic software [31] is used to delete 
the adaptors and poor-quality bases and reads (upto 50 bp) length 
are used for the analyses. An alignment strategy is used to analyse 
the data of xenograft model. False positives are avoided by discarding 
the common reads between the two genomes (humans and mouse). 
Though some information may be lost by this step, but it is essential 
for analysis. The alignment was performed to filter out mouse-like 
reads before mapping to the human reference and vice versa to 
differentiate human and mouse expression. STAR software is used 
to map data against homo sapiens (GRCh38/hg38) and Mus musculus 
(GRCm38/mm10) genomes separately. HTSeq software [32] is used 
for read counts and DESeq2 [33] is used to identify DE genes for each 
species. The crieteria for these genes were adjusted P-value (adjP) ≤ 
0.1 and Fold Change (FC) values ≥ 1.5 and ≤ −1.5 for the up-regulated 
and down-regulated genes in BTZ class, respectively.

Functional enrichment of GO terms and KEGG analyses
GEne SeT AnaLysis Toolkit (Webgestalt) [34,35] web server 

is used to perform the GO and KEGG analyses for Human and 
murine data separately. A list of all DE genes for each species was 
used separately for the differentially connected genes and gene 
modules. Hypergeometric analysis is used to obtain the P-values. 
Gene Ontology (GO) is used to study the nature of genes according to 
the International Standardized Classification System (ISCS) of gene 
function. GO is based on the function of molecules, components of cell, 
and Biological Process (BP) of genes. The calculated hypergeometric 
p-value is adjusted as q-value to investigate that the genes are from 
GO (Gene Ontology) term. Significantly enriched GO terms have 
q<0.05. GO enrichment analysis shows the performance of the 
biological functions of Differentially Expressed Genes (DEGs). The 
pathway maps represent proteins and genes which are accountable 
for the reaction networks and molecular interactions. These pathways 
are manually drawn from KEGG database. Significantly enriched 
KEGG pathways are also identified, similar to the GO enrichment 
analysis. The significantly enriched terms have q<0.05. The corrected 
P-values are used for False Discovery Rate (FDR). These terms were 
considered significant when adjP ≤ 0.1.

Principal Component Analysis (PCA) is carried out with 
https://gccri.bishop-lab.uthscsa.edu/correlation-analyzer/ [36]. 
The correlation for clinically expressed NSD1 gene to the DE genes 
for humans and mus musculus is obtained by genome-wide co-
expression correlation values for any gene of interest in multiple 
genes and disease conditions.

Single gene mode to reveal the genome-wide co-expression 
correlation values for any gene of interest in multiple genes and 
disease conditions were used to correlate the clinically expressed 
NSD1 gene to the DE genes for humans and Mus musculus data. The 
tool can provide gene counts from approximately 200,000 sequencing 
samples. The genome-wide co-expression correlations analysis 
provides a lot of biological sights for the cancer studies.
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ChIP analysis
ChIP-seq analysis is used to identify the genomic locations of 

transcription factors, histone modifications and many other proteins 
that bind DNA. Bowtie 2 [37] is used to perform ChIP-seq data 
alignment and Picard Mark Duplicates remove duplicate reads (bam 
files). Peak calling was performed using MACS2 [38]. MACS2 is used 
to detect transcription factor binding sites (narrow peaks) and the 
larger regions (broad peaks). 1,000 of these high-quality peaks are 
separated by their positive and negative strand tags and aligned by the 
midpoint between their centers. Finally top 100 most significant peaks 
were found which may overlap with any genes. The Transcription 
Factors (TFs) were taken from OmicsNet [39] to study the molecular 
interactions; Protein-Protein Interaction (PPI), TF-gene, miRNA-
gene and metabolite-protein. OmicsNet also provide system analysis 
of a single list of molecules; consolidated analysis of multiple lists 
of various types of molecules; and intuitive visualization of 2D/3D 
images. TF-gene interactions derived from ENCODE CHIP-seq data, 
with comprehensive PPI containing both known and predicted PPI 
(set parameters) using STRING software (http://www.string-db.
org/) [40]. TF-gene interactions were derived from data mining and 
manually curated data for Mus musculus.

Cistrome-GO, a web server http://go.cistrome.org/ [41] is used to 
conduct functional enrichment analyses of gene regulation by TFs in 
human and mouse with integration of ChIP-seq peaks and DE genes 
dataset.

Drug-gene interaction
DGIdb (Version 4.2.0- sha1 afd9f30b, https://dgidb.genome.

wustl.edu/) [42,43] is used to predict the interaction between 64 
prognostic core genes and drugs so that predictions should be made 
regarding the therapeutic targets with the approved drugs and 
immunotherapies.

Results
Total fourteen samples with eight single end samples (Organism: 

Homo sapiens, Mus musculus) and six paired end samples for ChIP 

analysis are used to check the quality results. The MultiQC reports 
seem to be good for all single read sequences. Each RNA-Seq sample 
(GSE) was aligned against two reference genomes; Homo sapiens 
(GRCh38/hg38) and Mus musculus (GRCm38/mm10) separately. 
Results indicated 81.2% of uniquely reads mapped for human and 
20.7% of uniquely reads mapped for mouse. 11% of reads mapped 
to both human and mouse genomes are excluded for further analysis 
(Supplementary Figure 1).

Detection of Differentially Expressed (DE) genes
A total of 43,388 genes were detected for the reads aligned to 

the human genome. Variance, sample-sample distance, dispersion 
estimates and histogram for DE human tumor genes are given in 
Figure 1. However, 64 DE genes were found for bortezomib-treated 
group (adjP<0.05). Of these, 27 genes were up-regulated and 37 genes 
were down-regulated (log2 FC ≤ -0.5) for bortezomib treatment 
(log2 FC ≥ 0.5) Supplementary Table 1. 25,239 genes were detected 
for the read alignment in mouse cells. Of these, 12 DE genes were 
found for bortezomib-treated groups (adjP<0.05). Variance analysis 
for mus musculus tumor cells are given in Figure 2. Out of which 3 
DE genes are up-regulated and 9 DE genes are down-regulated (log2 
FC ≤ -0.58).

The genes that were found to be up-regulated or down-regulated 
in drug-treated groups were assigned to pathways using information 
from several databases. The top ten Gene Ontology (GO) terms for 
Homo sapiens involve extracellular region, external encapsulating 
structure, extracellular matrix, collagen-containing extracellular 
matrix, endoplasmic reticulum lumen, external encapsulating 
structure organization, extracellular matrix organization, 
extracellular matrix structural constitution, extracellular structure 
organization and platelet-derived growth factor binding pathways 
(Table 1, Supplementary Figure 1). The top ten GO terms for mus 
musculus showed that the DE genes were involved in response to acid 
chemical, development of animal organ and system, animal organ 
morphogenesis, process for multicellular organism, development of 
multicellular organism, anatomical structure morphogenesis, retinal 

GO Terms Category de_genes
extracellular matrix 
structural constituent GO:OOJ5201 SPARC,COL6Al,PXDN,COL4Al,LAMB3,COL5Al,LAMB1,COL14Al,LUM,FBLN2,COL1Al,FBLN1,COL3Al 

endoplasmic reticulum 
lumen GO:OOJ5788 COL6Al,APOL1,COL4Al,COL5Al,LAMB1,COL14Al,SPP1,COL1Al,IGFBP4,SPARCL1,COL3Al,C3,COL18

extracellular matrix 
organization G0:0030198 SPARC,COL6Al,PXDN,COL4Al,LAMB3,PDGFRA,COL5Al,LAMB1,MMP2,CDH1,COL14Al,LUM,FBLN2,

extracellular structure 
organization G0:0043062 SPARC,COL6Al,PXDN,COL4Al,LAMB3,PDGFRA,COL5Al,LAMB1,MMP2,CDH1,COL14Al,LUM,FBLN2,

external encapsulating 
structure organization G0:0045229 SPARC,COL6Al,PXDN,COL4Al,LAMB3,PDGFRA,COL5Al,LAMB1,MMP2,CDH1,COL14Al,LUM,FBLN2,

Platelet-derived growth 
factor binding G0:0048407 COL6Al,COL4Al,PDGFRA,COL5Al,COL1Al,PDGFRB,COL3Al

collagen-containing 
extracellular matrix G0:0062023 SPARC,SERPI NG1,COL6Al,PXDN,COL4Al,LAMB3,COL5Al,LAMB1,MMP2,COL14Al,LUM,TI MP3,FBLN

extracellular matrix G0:0031012 SPARC,SERPING1,COL6Al,PXDN,COL4Al,LAMB3,COL5Al,LAMB1,MMP2,COL14Al,LUM,TI MP3,FBLN
external encapsulating 
structure G0:0030312 SPARC,SERPING1,COL6Al,PXDN,COL4Al,LAMB3,COL5Al,LAMB1,MMP2,COL14Al,LUM,TIMP3,FBLN.

extracellular region GO:OOJ5576 SPARC,PAEP,SERPING1,COL6Al,APOL1,LEFTY1,PXDN,COL4Al,LAMB3,C1R,COL5Al,VNN1,LAMB1,MI

extracellular space GO:OOJ5615 SPARC,PAEP,SERPING1,COL6Al,APOL1,LEFTY1,PXDN,COL4Al,C1R,COL5Al,LAMB1,MMP2,CDH1,COI

growth factor binding G0:0019838 COL6Al,PXDN,COL4Al,PDGFRA,COL5Al,COL1Al,IGFBP4,PDGFRB,COL3Al,A2M

structural molecule activity GO:OOJ5198 SPARC,COL6Al,PXDN,COL4Al,LAMB3,COL5Al,LAMB1,COL14Al,LUM,FBLN2,COL1Al,CLDN4,FBLN1,I
extracellular matrix 
structural constituent 
conferring tens

G0:0030020 COL6Al,COL4Al,COL5Al,COL14Al,COL1Al,COL3Al,COL18Al

collagen trimer GO:OOJ5581 COL6Al,COL4Al,COL5Al,COL14Al,LUM,COL1Al,COL3Al,COL18Al

Table 1: Pathways enriched for Differently Expressed (DE) genes for human (GRCh38/hg38) tumor cells.
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blood vessel morphogenesis, anatomical structure development and 
retina vasculature morphogenesis in camera-type eye Table 2. The 
results exemplify potential role of drugs for the immune response in 
the mouse.

The pathway enriched analysis of DE genes in MM cancer cells 

of (Homo sapiens and Mus musculus) is given in Supplementary 
Figure 2 and Supplementary Figure 3 respectively. The enriched GO 
categories are shown in red boxes. Interactive Heatmap was drawn 
for top variable genes and then it is used to calculate the euclidean 
distance between samples (Supplementary Figure 4, 5). The functional 

Figure 1: (A) Variance between drugs treated versus normal group. (B) Sample-sample distances for the drugs treated versus normal group counts. (C) Dispersion 
Estimates for dispersion versus mean of normalized counts. (D) Histogram of p-values for drug treated versus normal group. (For GRCh38/hg38).

DE Genes Pathway Name C O E R

Col4a1, Col1a2, Gja1, Id4, Lamb1,Sparc ,Tgm2

response to acid chemical 207 7 1.22E-07 0.0017

Col4a1, Col1a2, Gja1, Id4, Lamb1, Sparc, Tgm2

animal organ development 1881 13 3.531E-06 0.0248

Col1a2, Gja1, Id4, Lamb1, Tgm2

system development 2505 14 9.298E-06 0.0435

Col4a1, Col1a2, Gja1, Id4, Lamb1, Sparc, Tgm2

animal organ morphogenesis 632 8 0 0.0657

Col4a1, Col1a2, Gja1, Id4, Lamb1, Sparc, Tgm2 multicellular organismal process 3312 15 0 0.0657

Col4a1, Col1a2, Gja1, Id4, Lamb1, Sparc, Tgm2 multicellular organism development 2758 14 0 0.0794

Col4a1, Col1a2, Gja, Id4, Lamb1, Sparc, Tgm2

anatomical structure morphogenesis 1535 11 0 0.0907

Col4a1 retinal blood vessel morphogenesis 6 2 0.0001 0.1212

Col4a1, Col1a2, Gja1, Id4, Lamb1, Sparc, Tgm2

anatomical structure development 2950 14 0.0001 0.1303

Col4a1 retina vasculature morphogenesis in camera-type eye 9 2 0.0002 0.2153

Table 2: Pathways enriched for Differently Expressed (DE) genes in Tumor Microenvironment (TME) (mouse tissue (GRCh38/mm10)) after bortezomib treatment.
C: The number of reference genes in the category; O: The number of genes in the gene set and also in the category; E: The expected number in the category; R: Ratio 
of enrichment; adjusted by the multiple test adjustment.
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Figure 2: (A) Variance between drugs treated versus normal group. (B) Sample-sample distances for the drugs treated versus normal group counts. (C) Dispersion 
Estimates for dispersion versus mean of normalized counts. (D) Histogram of p-values for drug treated versus normal group. (For GRCh38/mm10).

KEGG Pathways Enrichment P-Value FDR

Viral carcinogenesis 12.083 6.30E-21 6.64E-19

Transcriptional misregulation in cancer 7.396 6.64E-09 4.20E-07

TNF signaling pathway 28.193 6.26E-03 1.52E-01

Systemic lupus erythematosus 29.94 4.10E-55 1.30E-52

RNA degradation 28.04 6.09E-03 1.52E-01

Relaxing signaling pathway 23.855 9.34E-03 1.97E-01

Neurotrophin signaling pathway 26.061 7.65E-03 1.73E-01

Necroptosis 8.755 6.75E-10 5.33E-08

Mitophagy - animal 48.456 2.12E-03 8.25E-02

GnRH signaling pathway 33.346 4.33E-03 1.37E-01

Colorectal cancer 5.634 5.61E-03 1.52E-01

Table 3: Integrated KEGG Pathways analysis from 100 peaks ChIP data and DE Genes (Homo Sapiens) from Cistrome-GO.

KEGG Pathways Enrichment P-Value FDR

Systemic lupus erythematosus 33.377 2.38E-34 7.43E-32

Alcoholism 24.632 3.82E-32 5.97E-30

Viral carcinogenesis 12.668 1.35E-13 1.41E-11

Necroptosis 10.726 7.04E-08 5.49E-06

Transcriptional misregulation in cancer 8.683 9.18E-06 5.73E-04

Table 4: Integrated KEGG Pathways analysis from 100 peaks ChIP data and DE Genes (Mus musculus) from Cistrome-GO.
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significance of gene list with pathways analysis for Homo sapiens and 
Mus musculus data was given in the Supplementary Figure 6, 7.

Principal component analysis
An unbiased PCA for DE genes were performed using highly 

variable genes to explore the global transcriptomic forms in RNA-
seq data. It is anticipated that any two genes are likely to display 
some similarities or dissimilarities regarding to their correlation 
value distributions. In a gene list, gene groups can be identified as 
the members of the list who share correlations in common that are 
not shared with other members. Principal Component Analysis 
(PCA) derives the principal components within the gene correlation 
matrix and the multidimensional dataset is shown graphically as a 
2-dimensional scatter plot. The 64 statistically significant principal 
components in the PCA were reduced to 2D values using t-SNE and 
these DE genes were divided into 7 discrete clusters (Homo sapiens). 
(Supplementary Figure 8) For mus musculus, the DE genes are 
divided in 3 cluster groups Supplementary Figure 9.

Single gene vs. gene set
Further the location of DE genes in our studies is correlated 

with the primary gene's (NSD) family for correlation distribution. 
The correlation is less significant for human and murine tumor cells 
Supplementary Figure 10, 11.

ChIP analysis
ChIP analysis provides an insight towards gene regulatory process 

when the transcriptomic profiles from expression microarrays are 
combined with ChIP Sequencing data. Transcription Factor (TF) 
genes play a major role in transcription by regulating gene expression. 
Next Generation Sequencing (NGS) technologies are cost effective, 
have genome coverage over wide range of data, and recover weaker 
binding events. ChIP-seq analysis depends on the variety of DNA-
binding factor, sensitivity and specificity of antibody towards the 
research area. It can be estimated by the total sub-sampling sequencing 
reads, and computing the recovery rate of ChIP-seq peaks [44]. The 
peak calling is used to detect regions with significant enrichment 
of ChIP signals with respect to the irrespective background. Gene 
regulation can also be understood by the ChIP-seq data of TFs, 
chromatin factors, and histone marks. It requires the prediction of 
TF regulated target genes, and its binding sites and binding patterns 
in Figure 3 (Homo sapiens) and Figure 4 (Mus musculus) for the 100-

Differential 
Expressed (DE) 

Genes
Approved Drugs/ Immunotherapies

GJA1 BLEOMYCIN, PROPYLTHIOURACIL

PDGFRA IMATINIB, SUNITINIB, PONATINIB, NILOTINIB, DASATINIB, PACLITAXEL, PAZOPANIB, SORAFENIB, CARBOPLATIN

MMP2 CYCLOSPORINE, BEVACIZUMAB, VINBLASTINE, PACLITAXEL, STREPTOZOCIN

CDH1 CAPECITABINE

GSTP1
DAUNORUBICIN, CYTARABINE, BUSULFAN, PREDNISONE, PACLITAXEL, BLEOMYCIN, MELPHALAN, THIOTEPA, EPIRUBICIN, 
ETOPOSIDE, CYCLOPHOSPHAMIDE, DECITABINE, IFOSFAMIDE, CISPLATIN, DEXAMETHASONE, OXALIPLATIN, AZACITIDINE, 
FLUOROURACIL, CARBOPLATIN, DOXORUBICIN, DOCETAXEL,

SPP1 TACROLIMUS

PDGFRB SUNITINIB, PAZOPANIB, NILOTINIB, PONATINIB, DASATINIB, IMATINIB, SORAFENIB

GDA THIOGUANINE

Table 5: Approved drugs/Immunotherapies from drug-gene interactions (Humans) with DGIdb.

Figure 3: 100 peak calling for DE tumor cells genes in homosapiens(GRCh38/hg38).
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peak calling.

The ten KEGG pathways from integrated (ChIP-DEGs) analysis 
predicted viral carcinogenesis, transcription misregulation in cancer, 
TNF signalling pathway, systemic lupus erythematosus, RNA 
degradation, relaxin signalling pathways, neurotrophin signalling 
pathway, necroptosis, mitophagy, GnRH signalling pathway and 
colorectal cancer for the homo sapiens data (Table 3) and systemic 
lupus erythematosus, alchohalism, viral carcinogenesis, necroptosis 
and transcription misregulation in cancer for mus musculus. All 
these pathways are associated with the genetic disorders (Table 4).

Drug-gene interaction
Approved drugs and immunotherapies have been predicted for 

GJA1, PDGFRA, MMP2, CDH1, GSTP1, SPP1, PDGFRB and GDA 
gene in Humans. Few of these approved inhibitors have already 
been used for the treatment of MM patients (Table 5). The other 
approved drugs/immunotherapies have been predicted for VCAN, 
GJA1 and TGM2 differentially expressed genes for mus musculus 
(Table 6). For example: PACLITAXEL IMATINIB, SUNITINIB, 
BLEOMYCIN, PONATINIB, VINBLASTINE [45,46], among many 
others are already used as combination therapies for MM patients. 
The possible major drug targets for PACLITAXEL (Cytochrome 
P450 2C8), IMATINIB (BCR-ABL tyrosine kinase), SUNITINIB 
(receptor tyrosine kinase), BLEOMYCIN (DNA), PONATINIB 

(BCR-ABL tyrosine kinase), VINBLASTINE (Tubulin alpha-1A 
chain) is mentioned in DrugBank [47]. In a previous study [48], it 
was observed that increased TXNDC5 expression in plasma cells and 
serum is related to a poor response for bortezomib-based therapy in 
patients with newly diagnosed MM and in those with relapsed MM. 
So, it is vital to understand the biology of MM and to identify the 
drug-resistance biomarkers for personalized treatments. Our studies 
suggested a combination therapy, which is seen in clinical treatment 
as well.

Discussion
MM is a multifactorial disease, which includes wide variety of risk 

factors that effects various aspects of life. Different studies showed 
different causes for MM. In one such study among 22 meta-analyses 
for MM patients, the risk factors for 9 were due to occupational factors, 
4 were assessed due to lifestyle (smoking, alcohol, body mass index) 
changes, 5 were due to presence of other diseases, and 4 due to genetic 
factors [48]. In our studies, with 64 DE genes, 50 genes were matched 
with the 1937 genes/proteins of MM genes from the dataset of curated 
CTD Gene-Disease Associations [49]. The studied upregulated and 
downregulated genes play a role in various molecular functions, 
biological process, cellular component and various pathways. The 
differentially expressed up-regulated SPARC glycoprotein gene in 
the bone binds calcium. In MM, calmodulins mediates Ca2+, and cell 

Figure 4: 100 peak calling for DE tumor genes in mus musculus. (GRCh38/mm10).

Differential Expressed (DE) Genes Approved Drugs/ Immunotherapies

Vcan CYCLOSPORINE

Gja1 BLEOMYCIN, PROPYLTHIOURACIL

Tgm2 SIROLIMUS, GEMCITABINE, DOXORUBICIN, CISPLATIN, CORTICOTROPIN

Table 6: Approved drugs/Immunotherapies from drug-gene interactions (Mus musculus) with DGIdb.
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cycle progresses with increase of calmodulin in a cell. So, calmodulin 
inhibitors are used for treatment of MM as these inhibitors induce 
apoptosis in cancerous cells [50]. In a previous study, it was reported 
that mutated TAP gene and calreticulin gene are used to produce 
calcium binding protein, a major part of endoplasmic reticulum; 
which is involved in regulating calcium homeostasis [51]. Calreticulin 
produces a calcium-binding protein that is a major component of the 
endoplasmic reticulum and has been shown to be involved in various 
cell types for regulating calcium homeostasis, as a ligand for integrins, 
and as a component of phagocytic synapses [51]. The up-regulation 
of calreticulin gene is an adverse prognostic factor. Also, it acts as a 
dominating pro-phagocytic signal in diverse tumors and is correlated 
with increased CD47 expression in cancer cells.

Surface membrane antigens as CD38, CD138, CD56, CD117, and 
CD33 identify the accumulated plasma cells in the bone marrow of 
patients with MM. In one such study, the whole transcriptome data 
revealed different expression levels of several genes, which showed 
myeloma pathogenesis. When these 50 genes were subjected to the 
GSEA using MSigDB, 11 of these genes had increased expression 
in plasma cells from patients with MM which were reported as 
up-regulated genes in the Munshi multiple myeloma data set [52]. 
In another study the expression of FGFR3, NSD2, MAF, CCND1, 
CCND2, CCND3 and MYC were obtained for MM [53]. Zhan et al. 
has divided the gene expression in 7 MM subgroups based on GEP 
[54] in which the gene expression in four groups (CD-1/CD-2, MF, 
MS) were genetically defined by recurrent translocations and one 
by hyperdiploidy (HY) [55]. EEF1G, ITM2C, FTL, CLPTM1L, and 
CYBA were identified as possible genes associated with MM [56], but 
no correlation between the gene expressions was observed for other 
studies [57].

Cisplatin resistance-related protein CRR9p (CLPTM1L) gene, 
EEF1G, ITM2C, FTL, CLPTM1L, CYBA and many other differentially 
associated genes associated with myelomagenesis were also reported 
[57]. As MM is a heterogeneous disease, the phenotype appears 
same across patients, while the genotype varies significantly among 
individual patients [58]. Due to the heterogeneity, it is very difficult 
to determine causal drivers of MM [47]. Results from previous study 
predicted that in mutations of these expressed driver genes (KRAS, 
NRAS, and IRF4), treatment or mutations had no influence on 
clustering, rather it is influenced by karyotypic events [59].

In a latest study, the RNA-seq-based risk score is correlated to 
specific MM somatic mutation profiles and their responses to targeted 
treatment including EZH2, TOPK/PBK, MELK, and aurora kinase 
inhibitors is analysed. These were characterized with more than 20 
mutations compared to the unmutated MM patients. The high-risk 
patients were identified with the RNA-Seq-based risk score with the 
following pathways; enrichment of genes related to cell proliferation, 
growth factor signaling, MYC pathway and epigenetic deregulation 
[59]. RNA-seq data of newly diagnosed MM patients treated with 
high-dose melphalan and autologous stem cell transplantation 
showed gene risk score for 267 genes in two independent cohorts 
(n=674 and n=76). The prognosis was predicted based on several 
Gene Expression Profiling (GEP)-based signatures including UAMS 
(70 genes) [60], HOVON-65/GMMG-HD4 (92 genes), [61] and IFM 
(15 genes) [62]. The public datasets of RNAi [63,64], and CRISPR-
Cas9 [65] (Dependency Map data, Broad Institute, 
www.depmap.org) was used to identify the essential genes in 
myeloma cell lines compared to other cancer cell lines. One hundred 
forty-two associated genes with poor survival compose the RNA-seq 

based risk score. Seven genes (ATP8B1, FGFR4, FOXD4, MX1, 
NPTXR, TMEM171, and TNFRSF10B) with a significantly lower 
DEMETER2 score were found in the myeloma cell lines (n=16) as 
compared to other cancer cell lines (n=695). GEP is a useful 
parameter to predict prognosis and screening for drug resistance 
biomarkers in MM with potential benefits for clinical management. 
High-risk patients were identified by genes expression involved in 
several major pathways implicated in MM pathophysiology, 
including cell proliferation, MYC pathways, and epigenetic 
regulation [52]. The studies further predicted higher RNA-seq based 
risk score values in the MM cells of patients characterized by ASXL1, 
ATM, BRAF, DIS3, EP300, FGFR3, KMT2B, LRP1B, MAP3K1, MAX, 
NOTCH2, NUP214, PRDM1, PTPRD, RB1, ROS1, SETD2, TP53, 
TRRAP, and ZFHX3 mutations compared to patients with 
unmutated MM cells. Indeed, the great majority of MM patients 
relapses and eventually become resistant to all treatments. Compared 
to the DE genes, pathways and the risk factors involved in the above 
studies, the DE genes of our data predicted that the MM patients are 
not in the high-risk zone. Combination therapy is suggested to be a 
better option, which is already used in the clinical treatment for the MM 
patients [18]. In another studies on MM, 424 DEGs with 350 up-
regulated genes and 74 down regulated genes showed that the spread and 
progression of MM is due to enrichment of transcription regulation, 
cell adhesion, cell differentiation of RNA polymerase II promoter, 
significant enrichment in protein binding rate, cell adhesion [66].

The top 10 GO pathways of human samples in the studies included 
extracellular region, external encapsulating structure, extracellular 
matrix, collagen-containing extracellular matrix, endoplasmic 
reticulum lumen, external encapsulating structure organization, 
extracellular matrix organization, extracellular matrix structural 
constitution, extracellular structure organization and platelet-derived 
growth factor binding, which do not show any high risk for the 
patients. Various groups have reported activated pathways such as 
cMYC, E2F activation, and chromosomal instability-defined GEP 
signature for higher risk of progression to MM with MGUS or SMM 
stage, [52] enhanced programmed cell death, NF-κB, DNA repair, 
and cytokines signaling pathway-related genes in MM cells in 
comparison with MGUS cells [53]. The impact of microenvironment 
on gene expression of MM cells revealed activation of crucial 
pathways, such as NF-κB, Notch, and Ras, and genes affecting cell 
amplification, cell endurance, and the regulatory activity of cell-cycle 
[67]. In the expression data of 229 MM patients and 20 healthy adults 
(GSE6477 and GSE13591) datasets, the top 5 Biological Processes 
(BPs) included the “immune response,” “phagocytosis, engulfment,” 
“positive regulation of B cell activation,” “B cell receptor signaling 
pathway,” and “phagocytosis, recognition” for MM patients. 
Potentially important target genes for 114 DEGs have been expressed 
in the membrane-bounded organelle (GO:0043227), organelle 
(GO:0043226), and intracellular organelle (GO:0043229), which have 
a number of annotated genes of 97/114; 100/114; 96/114 and FDR 
values of 2.80e-06; 1.45e-05; and 1.45e-05, respectively [68].

The correlation between the single gene (NSD1) versus 
DE genes indicated low correlation values (-0.25-0.25) for the 
human (Supplementary Figure 10) and mus musculus samples 
(Supplementary Figure 11).

The ChIP-seq analysis showed 100 lower peaks in humans and 
higher peaks in mus musculus. Since the level of these peaks are not 
similar in both Humans and mus musculus, it indicates that the target 
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cannot be used for further analysis in mice for knock-in and knock-
out or further pharmacokinetics analysis (Figure 3, 4) respectively.

The KEGG pathways from the integrated (ChIP-DEGs) analysis 
also predicted carcinogenesis [67] for the Human (Table 3) and 
Mus musculus (Table 4) The ten KEGG pathways from integrated 
(ChIP-DEGs) analysis predicted viral carcinogenesis, transcription 
misregulation in cancer, TNF signalling pathway, systemic lupus 
erythematosus, RNA degradation, relaxin signalling pathways, 
neurotrophin signalling pathway, necroptosis, mitophagy, GnRH 
signalling pathway and colorectal cancer for the Homo sapiens data 
(Table 3) and systemic lupus erythematosus, alchohalism, viral 
carcinogenesis, necroptosis and transcription misregulation in 
cancer for mus musculus. All these pathways are associated with the 
genetic disorders.

Several new classes of small molecules can also be used to 
specifically target epigenetic regulators for preclinical and clinical 
trials. These are ID3, C3, CFBPD, ZNF267, hsr-mir-98-5p and 
RDGBRA for human tumor genes while Esr1, Id4, Foxa1, mmu-mir- 
425-5p and mmu-mir-186-5p TF gene interactions for mus musculus, 
which has been identified in Transcription Factors (TF), Protein-
Protein interactions and miRNA interactions [69] (Supplementary 
Figure 12, 13) respectively.

In tRNA-derived fragments as a key regulatory factor in MM 
patients, the targets of tRF-60:77-Tr-TGT-1 from bioinformatics 
studies showed that Ras signaling pathway, cGMP-PKG signaling 
pathway, thyroid hormone signaling pathway and FoxO signaling 
pathways participated in MM [70]. The prognosis associated long 
noncoding RNA (mRNA) network for MM on bioinformatics 
analysis on microarray based 559 patients with MM from the 
GSE24080 included signal transduction by a p53 class mediator, cell 
cycle G2/M transition and mitotic cell cycle G2/M transition which 
is closely involved in proliferation of tumors [71]. KEGG pathway 
enrichment of 424 DEGs showed enrichment in PI3K Akt signaling 
pathway, actin cytoskeleton regulation, AGE-RAGE signaling 
pathway in diabetes complications, HIF-1 signaling pathway and 
TGF-β Signaling pathway, Rap1 signaling pathway, and tumor 
necrosis factor signaling pathway [66]. Bioinformatics studies for 
(GSE6477 and GSE13591) showed significantly enriched in “systemic 
lupus erythematosus,” “influenza A,” “antigen processing and 
presentation,” “The cell differentiation,” “hematopoietic cell lineage,” 
“intestinal immune network for IgA production,” and “graft-vs.-host 
disease”. The significantly enriched pathways for 114 genes were 
Epstein-Barr Virus (EBV) infection (hsa05169), MicroRNAs in cancer 
(hsa05206), PI3K-Akt signaling pathway (hsa04151), and p53 
signaling pathway (hsa04115) during development of MM [68].

The Drug-Gene interaction studies recommended combination 
therapies for Humans (Table 5) and Mus musculus data (Table 6). 
The combinations of Carfilzomib, lenalidomide, dexamethasone, 
cyclophosphamide, dexamethasone, Elotuzumab (or daratumumab), 
lenalidomide, and dexamethasone are already used for treatment 
of other MM patients [72,73]. Previous studies indicated the 
combination therapies from daratumumab, selinexor (XOP1 nuclear 
export inhibitor) and isatuximab (another anti-CD38 monoclonal 
antibody), antibody-drug conjugate (belantamab mafodotin) and 
BCMA-targeted CAR-T cell therapy (Idecabtagene vicleucel) 
are recently approved inhibitors to treat MM, while few others 
such as (Bispecifc T Cell Engager Antibodies (BiTEs), Antibody-
Drug Conjugates (ADCs), Monoclonal Antibodies (MoAbs), 

Immunomodulatory Drugs (IMiDs), Proteasome Inhibitors (PIs) and 
small molecule inhibitors and modulators are at phase 1 and phase 2 
clinical trials [8]. In 37 open clinical trials for treatment resistant MM 
combination of Bortezomib and other chemotherapeutic agents were 
recommended [68].

Conclusion
The identification of DEGs is now widely available via high 

throughput analysis of transcriptomes. However, the quality of 
data generated is highly dependent on the experimental design, 
quality of RNA, and sequencing depth. The ChIP-seq technique can 
provide valuable information about transcriptional regulation based 
on transcription factor binding to target DNA promoter motifs for 
coordinating transcriptional regulation in response to environmental 
cues, while RNA-seq alone does not provide complete information. 
However, a combination of these technologies opens up new prospects 
to better elucidate more comprehensive gene regulatory networks. In 
this study, Artificial Intelligence (AI) driven bioinformatics tools are 
used to predict the treatment for the MM patients using RNA-Seq 
and epigenetics data [18]. TF-gene interactions were seen for ID3, 
C3, CFBPD, ZNF267, hsr-mir-98-5p and RDGBRA human tumor 
genes while Esr1, Id4, Foxa1, mmu-mir-425-5p and mmu-mir-186-5p 
TF gene interactions were observed for mus musculus. The different 
level of epigenetics peaks found in both Humans and Mus musculus 
indicated that further analysis with mice is not required for knock-in 
and knock-out or pharmacokinetics analysis. The integrated (ChIP-
DEGs) KEGG pathway analysis showed genetic disorders. Any 
conflicting transcriptomics and ChIP studies between human and 
rodent could be because of the small sample  size. Drug-gene 
interaction predicted few approved drugs and immunotherapies for 
MM patients. Bioinformatics studies suggested a combination 
therapy, which is seen in clinical treatment as well. Overall, the 
bioinformatics studies showed positive correlation to the clinical 
results upto some extent, yet it is advisable that the treatment 
recommended to the patients will only be implemented after expert 
advice of Oncologists along with in vivo and in vitro studies.
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