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Editorial
Perinatal Hypoxic-Ischemic (HI) brain injury is one of the predominant causes of permanent 

neurological handicap in newborn infants [1]. Despite considerable progress in neonatal intensive 
care and the introduction of neonatal neuro-critical care, our current understanding of this disease 
does not allow for the development of mechanism-targeted neuroprotective interventions. HI-brain 
injury is initiated by acute oxygen and substrate deprivation secondary to the collapse of cerebral 
circulation. HI produces a severe bioenergetic crisis leading to cellular demise if nutrient and oxygen 
supply are not restored in appropriate time. If cerebral circulation is reestablished, then reperfusion 
initiates full or partial brain recovery. At the same time, reperfusion can also serve as a critical stage 
of HI injury. Recently, it has been shown that one of the leading mechanisms of reperfusion injury is 
oxidative stress in which mitochondria are recognized as the primary sites for excessive production 
of Reactive Oxygen Species (ROS) [2]. Since mitochondrial ROS production occurs primarily early 
on during reperfusion, metabolites fueling ROS production should also be oxidized in the same 
time period [3]. In normoxic brains, mitochondria are mostly fueled by the oxidation of NAD-
linked, complex-I dependent substrates [4]. In post-ischemic neonatal and adult brains, there is 
an almost 30-fold elevation of FAD-linked substrate, succinate, and a decrease in the NAD-linked 
substrates except for alpha-ketoglutarate [4,5]. As reperfusion progresses, both FAD- and NAD-
linked substrates are restored to normoxic levels [4]. The reperfusion-driven decline in succinate 
is coupled with gradual elevation of fumarate. This suggests that accumulated succinate is actively 
metabolized during the initial stage of reperfusion. Indeed, experiments with ex-vivo isolated brain 
homogenates fuelled with glucose demonstrated preferential oxidation of succinate at the onset and 
during the initial reperfusion [4]. This post-ischemic shift in mitochondrial substrate oxidation is of 
critical mechanistic significance, because oxidation of succinate creates Reverse Electron Transport 
(RET) from complex-II to complex-I which dramatically increases ROS production compared 
to conventional, complex-I-dependent Forward Electron Transport (FET, from complex-I 
to complex-IV) [5-7]. Our previous reports have demonstrated that partial inhibition of the 
reperfusion-driven recovery of mitochondrial complex-I significantly reduced mitochondrial ROS 
generation and attenuated HI-brain damage [8,9]. Furthermore, it has been shown in cardiac and 
brain ischemia-reperfusion injury that the extent of damage was strongly linked to accumulation 
of succinate [5]. These data suggest that at the onset of reperfusion, the recovery of mitochondrial 
metabolism is driven by the oxidation of succinate which reactivates ATP generation via FET, but 
simultaneously generates an excessive amount of ROS via RET. Significantly greater tolerance of 
complexes-II, III and IV to ischemic depression compared to complex-I explain FET-dependent 
recovery of ATP generation upon reperfusion [10]. Succinate supported RET, however, requires 
active complex-I to provide electron flux from complex-II to the electron acceptor, NAD+ [11,12]. 
Complex-I is the most sensitive mitochondrial complex to ischemic depression [13]. Therefore, at 
the onset of reperfusion, when complex-I is depressed, succinate oxidation mostly contributes to 
bioenergetics recovery (ATP production), as FET does not depend on complex-I activity. However, 
once complex-I reactivates (at five minutes of reperfusion), succinate oxidation begins to support 
elevated production of ROS via RET [14]. This concept of reperfusion injury explains the mechanism 
of neuro- and cardioprotection exerted by transient inhibition of complex-I recovery during initial 
reperfusion reported by us and others [9,15,16]. Thus, there three most critical biological conditions 
that have been reported in support of RET-dependent mechanism of excessive mitochondrial 
ROS release in reperfusion: 1) reactivation of complex-I, 2) accumulation of succinate and 3) 
preferential oxidation of succinate in mitochondria [4,5,9]. Considering post-ischemic inhibition 
of complex-I activity, preferential mitochondrial oxidation of accumulated succinate is critical 
for ATP replenishment at the initiation of reperfusion. The supplementation of succinate upon 
reperfusion has been shown to reduce myocardial infarction [17]. In the model of perinatal HI-
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brain injury succinate accumulation was linked to improved neo-
angiogenesis and neuro-recovery governed by G-protein coupled 
receptor 91 [18]. Thus, post-ischemic accumualtion and preferential 
oxidation of succinate in neonatal HI-brain injury contributes to 
both bioenergetics recovery and reperfusion-driven oxidative stress. 
Considering normalization of succinate levels with reperfusion the 
elevation of complex-II (succinate-dehydrogenase) product fumarate 
and recovery of NAD-linked substrate concentrations and NAD-
linked mitochondrial respiration with reperfusion, this preferential 
succinate oxidation must be transient [4,8,19]. We propose that at 
the initiation of reperfusion, transient pharmacological inhibition of 
complex-I reactivation could be considered as the initial therapeutic 
maneuver against reperfusion injury. This strategy does not alter 
bioenergetics recovery, because complex-I does not participate 
in succinate supported ATP production. However, it should be 
restricted only to the reperfusion stage when succinate is actively 
metabolized. This stage could be defined by the detection of cerebral 
succinate content and its normalization using MRI-spectroscopy. In 
conclusion, further studies to understand pro-survival and pathogenic 
mechanisms induced by post-HI accumulation and preferential 
oxidation of succinate in the developing brain are critically important 
to develop a novel concept of metabolic resuscitation which should be 
initiated with a return of circulation in the ischemic brain.
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