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Introduction
The oral cavity has unique properties which differ from most other sites in the human body. A 

large variety of microorganisms reside in our intraoral environment [1]. The existence of bacteria 
in the oral environment is natural and essential for the physiology of the oral cavity [1,2]; we all 
coexist with the oral biofilm community. The resident microflora also contributes to the prevention 
of exogenous microorganisms becoming established in the mouth [2]. The oral cavity is the only 
organism that enables removal (without surgical intervention) of biofilms developed in the human 
body. Therefore, mechanical elimination such as brushing and flossing is fundamental for the control 
of oral biofilm [3]. The chemical approach is used as an alternative or adjunctive method when 
elimination using dental instruments proves difficult. Consequently, various antimicrobial agents 
have been formulated into oral care products in order to enhance their plaque control potential 
[4-6]. In fact, it has been demonstrated that adjunctive antimicrobials improve clinical parameters 
including plaque index and gingival inflammation by interfering with metabolic activities [6-10].
It has also been reported that antiplaque biocides do not cause microbial resistance and alterations 
to microbial flora [4]. However, recent investigations have reported on the limitations of chemical 
strategies that rely on antimicrobial properties. This article reviews studies demonstrating the 
adverse effects of antimicrobial strategy against oral biofilm and discusses a possible strategy for the 
control of oral biofilm.

Retarded Penetration into Biofilm
Recent investigations have demonstrated that antimicrobial compounds do not work as 

intended [11-14]. Especially in a short time exposure, antimicrobials failed to penetrate the biofilm. 
This phenomenon can be explained as the result of retarded penetration due to degradation and/
or modification by the biofilm matrix. Extracellular polymeric substances (EPSs) produced by 
microorganisms make up the intercellular space of microbial aggregates and form the architecture 
of the biofilm matrix which reduces antimicrobial penetration (Figure 1) [15,16]. In direct time-
lapse microscopic observation, the penetration of 0.12% chlorhexidine gluconate (CHG) into an 
oral biofilm model was critically restricted, indicating that the average penetration velocity was only 
4.1 µm/min [12]. Wakamatsu et al. [17] have reported the penetration kinetics of mouth rinses into 
in vitro Streptococcus mutans biofilms by direct time-lapse microscopic analysis. The antimicrobial 
penetration was critically restricted within 30 s of exposure, and the average penetration velocity 
ranged from 4.2 to 30.1 µm per min. Consequently, the microorganisms inside the biofilm will 
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Abstract
Chemical complements such as toothpastes and mouth rinses that contain antimicrobial agents 
have proven to be effective for the control of oral biofilm. When used with adequate mechanical 
measures, additional anti-plaque and anti-gingivitis clinical benefits are achieved. However, recent 
investigations have reported some adverse effects of the antimicrobial strategy for the control 
of oral biofilm. One adverse effect is that most of the antimicrobial agents failed to remove the 
biofilm structure. The residual structure may serve as a scaffold for the redevelopment of biofilm. 
The remaining structure causes adverse effects with regard to host response to pathogens, even if 
the microorganisms in the biofilm are completely killed. Another effect is that low-dose antibiotics 
may promote bacterial biofilm formation. The short exposure time of chemical agents will cause 
gradient of concentration inside the biofilm. It has been demonstrated that a variety of antibiotics 
or antimicrobial agents at sub-MIC levels can induce biofilm formation in vitro, interfering with 
bacterial biofilm virulence expression. Future strategies that promote the biofilm matrix detachment 
are therefore expected, without affecting bacterial growth targeting to polymeric substances.
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respond to antimicrobial stress and facilitate a horizontal gene 
transfer [18].

Residual Structure
Recent investigations have demonstrated that disinfection by 

antimicrobial agents resulted in leaving the biofilm structure intact. 
A summary of representative experiments demonstrating that the 
chemical approach failed to detach the biofilm structure is shown 
in Table 1. It has been reported that little or no biofilm structure 
was removed when in vitro oral biofilms were treated with ethanol 
[12,14], chlorhexidine [12,14,17,19], nisin [14,20], glutaral dehyde 
[20], a quaternary ammonium compound [20], sodium lauryl sulfate 
[14], triclosan [14], cetylpyridinium chloride [14,17], or essential 
oil [17]. Davison et al. [20] investigated the dynamic antimicrobial 
action of four antimicrobial agents within biofilm cell clusters of 
Staphylococcus epidermidis using time-lapse confocal scanning laser 
microscopy (CSLM). The penetration of antimicrobial activity, as 
judged by calcein-AM fluorescence loss, was remarkably retarded 
and chlorine was the only antimicrobial agent that caused any 
biofilm removal. In the latest investigation by Song et al. [21] it 
has been demonstrated, using bacterial vibration spectroscopy and 
attenuated total reflectance-Fourier transform infrared (ATR-FTIR) 
spectroscopy that oral bacteria adhering to salivary conditioning 
films became more difficult to remove after exposure to mouth rinses 
containing CHG, cetylpyridinium chloride, or amine fluoride, due 

to strengthening of the polysaccharide bond. The residual structure 
may cause adverse effects in the oral environment even if the 
microorganisms in the biofilm are completely killed. One possible 
negative reaction is that the disinfected structure contributes a source 
of antigen that causes host inflammatory reaction. Since EPS contains 
carbohydrates, proteins, polysaccharide, lipids, and nucleic acids 
[22], dead bacteria and their components will work as antigens and 
induce inflammatory reactions. Also, the structural component of 
the outer surface membrane of bacteria is known to activate immune 
cells, such as macrophages and monocytes [23-25]. For example, 
the lipid A moiety of lipopolysaccharides (LPS) initiates innate 
immune responses by interacting with Toll-like receptor 4 (TLR4), 
which results in the production of a wide range of cytokines. Thus, 
derivatives of LPS have been noted as adjuvants for vaccinations [24]. 
Augustin et al. [26] noted that the injection of the dead components 
of Enterococcus faecalis into rats, following mechanical aortic damage 
from a catheter, produced endocarditic vegetation enriched with 
polymorphonuclear cells. Taken together, the failure to disrupt 
the structure of the biofilm after the antimicrobial approach may 
contribute to continuous inflammation. Another possible negative 
effect is that the residual structure may act as a scaffold for secondary 
bacterial adhesion. We have demonstrated that the residual structure 
of S. mutans biofilm promoted the secondary bacterial adhesion and 
biofilm redevelopment, using a rotating disk reactor in vitro [27]. 
At first, S. mutans biofilm generated on a resin-composite disk was 

Biocide Species Conditions for 
biofilm formation

Flow speed of 
biocide Exposure time Judgment Reference

11.6% EtOH
0.12% CHG
Biotene

Streptococcus oralis, 
Streptococcus gordonii, 
Actinomyces naeslundii

Flow cell chamber 1 ml/ min 20 min Microscopic observation 
(transmission image) [12]

40% EtOH
0.1% SLS
0.03% TRN
0.12% CHG
0.05% CPC
0.005% nisin

Streptococcus oralis, 
Streptococcus gordonii, 
Actinomyces naeslundii

Flow cell chamber 1 ml/ min 60 min Microscopic observation 
(transmission image) [14]

0.12% CHG
EO
CPC
IPMP

Streptococcus mutans Glass-based dish No flow 5 min Microscopic observation 
(transmission image) [17]

0.05 to 0.2% CHG Porphyromonas gingivalis Glass-based chamber No flow 5 min

Microscopic observation 
(transmission image),
Quantitative analysis of 
protein and carbohydrate 
composition

[19]

0.14mM QAC
0.5mM Glutaraldehyde
14.9 µM nisin

Staphylococcus epidermidis Flow cell chamber 1 ml/ min 60 min Microscopic observation 
(transmission image) [20]

Table 1: A summary of representative experiments demonstrating that chemical approach failed to detach the biofilm structure.

EtOH: Ethanol; CHG: Chlorhexidine Gluconate; SLS: Sodium Lauryl Sulfate; TRN: Triclosan; CPC: Cetylpyridinium Chloride; IPMP: Isopropyl Methyl Phenol; QAC: 
Quaternary Ammonium Compound

Biocide Concentration of 
biocide Species Condition of 

bacteria
Incbation 

time Up regulated genes Reference

Sodium fluoride
Chlorhexidine
Tea polyphenol

1/2 MIC Streptococcus mutans Planktonic 24h gtfB, gtfC, luxS, comD, comE [38]

Sodium fluoride
Chlorhexidine
Tea polyphenol

1/2 MIC Streptococcus mutans Biofilm 24h gtfB, gtfC, gtfD, luxS, comD, 
comE [38]

Triclosan 1/2 and 1/4 MIC Streptococcus mutans Planktonic 2h atlA, gtfB, gtfC, comD, luxS [39]

MTAD
MTADN
MTAN

1/4 MIC Porphyromonas gingivalis Planktonic 1h

clpC, clpP (MTAD, MTADN, 
MTAN).
sprE (MTAD, MTADN),
ace, clpX, cylB, efaA, gelE 
(MTAN).

[40]

Table 2: A summary of representative experiments demonstrating that sub-MIC of antimicrobial agent’s up regulate pathogenic genes.

MTAD: 3% doxycycline, 4.5% citric acid and 0.5% polysorbate 80 detergent, MTADN: nisin combined with MTAD, MTAN: nisin in place of doxycycline in MTAD.
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disinfected completely with 70% isopropyl alcohol, and then returned 
to the reactor. The same bacterial strains in the logarithmic phase were 
then flowed into the reactor for 4 h. The number of secondary cells 
that adhered to the remaining structure was compared with those 
on a disk without structure, using CLSM analysis and quantitative 
analysis. Three-dimensional reconstruction revealed that viable 
bacteria appear to get caught on the upstream edges of the disinfected 
biofilm structure. The cryosectioned sample demonstrated stratified 
patterns of viable cells beside the structure. The mean viable count 
that adhered to the structure was significantly higher than that on 
the plane surface. Yamaguchi et al. [19] investigated the volume of 
Porphyromonasgingivalis adherent to the residual biofilm following a 
CHG treatment for 5 min using CLSM. It was shown that the amount 
of P. gingivalis adhering to the residual structure was greater than that 
on the non-structural surface. These results indicate that the residual 
biofilm could serve as a scaffold for secondary biofilm formation.

Antimicrobial-Induced Biofilm Formation
Numerous studies have shown that subminimal inhibitory 

concentrations (sub-MICs) of various antibiotics and chemicals can 
inhibit biofilm formation. A representative example is macrolide 
antibiotics. In the case of Pseudomonas aeruginosa, which contributes 
to the progression of respiratory infection, the bacterium shows 
a resistance to the macrolide azithromycin. However, in spite of 
this resistance, low-dose azithromycin has been shown to inhibit 
protein synthesis [28] and improve clinical symptoms [29,30]. It has 
also been shown that sub-MICs of azithromycin inhibited quorum 
sensing and alginate production [31,32]. In contrast to the inhibitory 
effects of sub-MIC antimicrobials against biofilm formation, recent 
studies have shown that some antibiotics at sub-MIC can significantly 
promote biofilm formation by a variety of bacterial species such as 
Staphylococcus epidermidis, Staphylococcus aureus, Staphylococcus 
lugdunensis, Escherichia coli, and P. aeruginosa [33]. Kaplan et al. 
demonstrated that biofilm formation of some strains of S. aureus 
significantly increased in the presence of four different β-lactam 
antibiotics at sub-MIC [34]. The amount of biofilm induction was 
10-fold at its maximum, and sub-MIC β-lactamantibiotics induced 
autolysin-dependent extracellular DNA release. This phenomenon is 
of great clinical significance because bacteria are exposed to sub-MIC 
of antibiotics at the beginning and end of a dosing regimen [35]. In 
addition, antimicrobials are retarded in order to diffuse within the 

biofilm matrix [36,37]. In such cases, the bacteria in deeper areas are 
exposed to antimicrobials at sub-MICs. As for oral biofilm, some 
studies reported that sub-MICs of antimicrobial agents up regulate the 
genes related to pathogenicity [38-40]. A summary of representative 
experiments is shown in Table 2. Even in limited works with regard 
to oral biofilms, it is likely that a short exposure time of antimicrobial 
agents in the oral cavity sometimes causes adverse effects because the 
microorganisms that survived exposure to the agents will alter gene 
expression in both positive and negative ways.

Detachment-Promoting Agents
Overall, shifting the focus from the bacteria-targeting to 

the matrix-targeting approach seems a reasonable strategy for 
controlling oral biofilms. One possible strategy is to use a type of 
enzyme to degrade the EPS [41-45]. For example, glycoside hydrolase 
dispersin B has been shown to degrade poly-N-acetyl-glucosamine 
polymers, inhibit biofilm formation, and detach established biofilm 
colonies [41,45]. Another possible strategy is to use a compound that 
interferes with genes related to EPS production [46-49]. We have 
recently reported that vizantin, animmuno stimulating compound, 
caused structural degradation as a result of changing gene regulation 
related to bacterial adhesion and glucan production of S. mutans 
[49]. Vizantin did not affect either bacterial growth or biofilm 
formation, whereas the biofilm developed in the presence of 50 µM 
sulfated vizantin was readily detached from the surface. Furthermore, 
biofilm development on a hydroxyapatite disk coated with sulfated 
vizantin was inhibited depending on the concentration, suggesting 
prevention from bacterial adhesion. Among eight genes related to 
bacterial adherence in S. mutans, the expression of gtfB and gtfC was 
significantly up regulated, whereas the expression of gtfD, GbpA, 
and GbpC was down regulated according to the concentration. This 
novel immune stimulating compound may be useful in a matrix-
targeting approach. However, a control strategy using an enzyme 
and interfering with exopolysaccharide synthesisis limited in terms of 
targeting a specific polysaccharide component. Further investigations 
are needed to explore the possibility of clinical applications of these 
detachment-promoting agents as the biofilm is composed of EPS 
produced by a variety of microorganisms.

Conclusion
Numerous and diverse microorganisms reside in the intraoral 

environment, and we all coexist with oral biofilm. Thus, chemical 
controls for oral biofilm are entirely different from approaches toward 
conventional medical pathogens. The aim of the chemical approach 
is to control oral biofilm rather than eradicate it, thus preserving the 
benefits of the normal resident oral microflora.
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