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Editorial
A causative role for hyperglycemia in the development of diabetic microvascular complications 

is very clear. In fact, the glycemic parameters that are used to define/diagnose diabetes mellitus 
(fasting blood glucose >7 mM) were chosen because they effectively differentiate individuals at 
high risk for developing retinopathy from those at low risk [1]. In contrast, the association between 
hyperglycemia and macrovascular disease appears to be much more complex. There is a progressive 
relationship between increasing blood glucose concentration and Cardiovascular Disease (CVD), 
with CV risk rising approximately 20% for every 1.5 mM increase in fasting glucose, or for every 1% 
elevation in HbA1c levels [2,3]. Furthermore, both epidemiological and pathophysiological studies 
have shown that hyperglycemia is an independent CV risk factor. Unexpectedly, clinical trials, 
including ACCORD, ADVANCE and VADT, have shown that intensive glucose lowering does not 
prevent macrovascular complications in older patients with long-standing diabetes and existing CV 
risk factors [4]. In contrast, other trials in younger patients, have shown that glucose lowering is 
associated with reduced carotid atherosclerosis and CVD in patients with T1D, and has a significant 
cardiovascular benefit in patients with T2D [5-7].

Traditionally the micro- and macrovascular complications of diabetes have been viewed, and 
treated, as distinct and independent conditions. However, there is a strong association between the 
incidence of diabetic micro- and macrovascular disease. A recent meta-analysis of 21 epidemiologic 
studies of people with either type 1 or type 2 diabetes reported a 2-4 fold higher risk of future 
ischemic cardiovascular events in those with retinopathy versus those without retinopathy [8]. 
Moreover, the risk of cardiovascular events rises with the degree of retinopathy.

The mechanisms by which hyperglycemia disrupts normal microvascular structure/function 
have not been clearly defined but may involve oxidative stress/Advanced Glycation End products 
(AGEs) and/or Endoplasmic Reticulum (ER) stress. Inflammation, pericyte loss, increased 
extracellular matrix deposition, and ultimately, increased vascular permeability and vessel leakage 
are characteristics of micro vessel disease. Depending upon the tissue/organ being considered and 
the duration of disease, the effects of hyperglycemia on the microvasculature can lead to excessive 
neovascularization, as in proliferative diabetic retinopathy and nephropathy, or attenuated 
neovascularization, contributing to pre-proliferative retinopathy, impaired coronary collateral 
vessel development, impaired wound healing, and transplant rejection in diabetic recipients. The 
concurrent existence of pro- and anti-neovascularization responses in diabetes has been called the 
“angiogenesis paradox” [9].

Angiogenesis is the formation of new blood vessels from pre-existing vessels [10]. Inflammation 
and oxidative stress modulate angiogenesis by regulating the expression/stability of the Hypoxia-
Inducible Factor (HIF)-1α [11]. Hypoxia stimulates angiogenesis by inhibiting degradation of HIF-
1α, thereby increasing its activity.HIF-1α is a transcription factor that acts, in concert with HIF-1β 
and p300, to up regulate the expression of many pro- angiogenic cytokines and growth factors, 
including Vascular Endothelial Growth Factor (VEGF). VEGF is secreted by hypoxic cells and 
interacts with receptors (VEGFR1/2) found on endothelial cells (and other cell types). This initiates 
angiogenic processes that ultimately result in increased blood flow and reoxygenation of hypoxic 
tissues. The mechanisms by which diabetes/hyperglycemia may affect angiogenesis are not well 
understood. The angiogenesis paradox is most strikingly illustrated by the fact that experimental 
treatments for proliferative diabetic retinopathy and nephropathy involve targeting VEGF for 
inhibition, whereas application of exogenous VEGF facilitates wound healing in diabetic patients 
[12,13].

The vasa vasorum consists of anetwork of small arterioles, capillaries and venules that supply 
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the cells that constitute the adventitia and tunica media of large blood 
vessels, including the aorta and coronary arteries [14]. Vasa vasorum 
literally means “vessels of the vessels”, and therefore, by definition, 
it is the place where the microvasculature and the macrovasculature 
directly interact. A role for the vasa vasorum in the progression 
of atherosclerosis is not a new idea, but historically, it has been a 
contentious one. A correlation between advential neovascularization 
and atherosclerotic lesion size has been observed in (non-diabetic) 
humans and in atherogenic mouse models [15,16]. The cause-effect 
relationship between lesion neovascularization and atherogenesis in 
these models is not clear - Does lesion growth promote vasa vasorum 
angiogenesis, or does vasa vasorum expansion drive lesion growth? 
Furthermore, what are the macrovascular consequences of impaired 
vasa vasorum neovascularization?

Because the fundamental purpose of the vasa vasorum is to 
facilitate the supply, maintenance and repair of the healthy arterial 
wall, disruption of this microvascular network is likely detrimental. 
Occlusion of the vasa vasorum has been associated with localized 
ischemia in the arterial media that may lead to the proliferation 
of smooth muscle cells, localized intimal/medial thickening, and 
increased synthesis of collagen fibers [17-19]. Other studies have 
suggested that the vasa vasorum plays an important role in reverse 
cholesterol transport and removal of lipids from the artery wall [20]. 
Relatively early in atherogenesis, the increased oxygen demands 
associated with inflammation together with subintimal thickening 
of the artery wall create localized regions of hypoxia. Hypoxia can 
directly contribute to atherogenesis by promoting foam cell formation 
through the induction of fatty acid biosynthesis and inhibition of 
fatty acid oxidation and cholesterol efflux [21]. Hypoxia and elevated 
levels of HIF-1α have been implicated in promoting inflammatory 
M1 macrophage polarization and potentiating IL-1β production 
[22]. Hypoxic cells shift their metabolism to anaerobic glycolysis 
resulting in the production of reactive oxygen species and reduced 
ATP availability that may lead to cell death, thereby contributing to 
growth of the necrotic core [23]. 

Conversely, other studies have shown that systemic application 
of pro-angiogenic stimuli is associated with enhanced atherosclerosis, 
and anti-angiogenic therapies attenuate atherosclerosis [24-26]. It is 
possible that abnormally enhanced, or attenuated, neovascularization 
of the vasa vasorum can be detrimental to artery health. It is also 
important to note that all prior studies have been performed in non-
diabetic/normoglycemic animal models. The effects of diabetes/
hyperglycemia on vasa vasorum structure and function had not been 
investigated - prior to our recent study [26].

Our findings have shown that atherosclerotic lesion growth 
in normoglycemic ApoE-/- mice is associated with expansion 
in the number of micro vessels of the vasa vasorum [26]. This 
likely corresponds to the increasing blood supply demands of the 
thickening artery wall and is consistent with previous reports [15]. 
In contrast, in hyperglycemic ApoE-/- mice, we observed significantly 
impaired expansion of the vasa vasorum in atherosclerotic regions 
compared with atherosclerosis-free regions. This is despite the fact 
that the lesion volumes in hyperglycemic mice are at least 2× larger 
than those in normoglycemic mice at 15 weeks of age. Insulin 
supplementation of STZ-injected ApoE-/- mice normalizes blood 
glucose levels, rescues vasa vasorum deficiency, and attenuates 
atherosclerosis. Similar results were obtained in hyperglycemic ApoE-

/-/Ins2+/Akita mice. Taken together these data are the first evidence 
that: i) hyperglycemia attenuates neovascularization of the vasa 

vasorum during normal artery development and especially during 
atherogenesis and, ii) expansion of the vasa vasorum is not required 
to support (or promote) accelerated atherosclerosis in these models. 
We found that hyperglycemic mice have significantly elevated levels 
of lesional hypoxia and HIF-1, but significantly less lesional VEGF, 
relative to normoglycemic controls. These findings suggest that there 
is a “disconnect” between pro-angiogenic stimuli (hypoxia, HIF1α) 
and response (VEGF, angiogenesis) leading to increased hypoxia and 
accelerated atherosclerosis. 

In summary we propose that that the disruptive affects of 
hyperglycemia on the microvasculature of the vasa vasorum 
contributes to the accelerated development of atherosclerosis in 
diabetes. This could mean that macrovascular disease is, in fact, 
another microvascular complication of diabetes.
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