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Abstract
Prostate Cancer (PCa) is one of the leading causes of cancer-related deaths among the men around 
the world. In this study, we aim to identify candidate biomarkers in PCa using bioinformatics 
analysis combined with the analysis of the common database of tumors and uncover possible 
mechanisms. The gene expression profiles of GSE55945 including 13 PCa samples (with Gleason 
score of 6 or 7) and 8 normal prostate samples were downloaded from GEO database. Firstly, 
Differentially Expressed Genes (DEGs) were obtained using “limma” R package followed by pre-
procession of raw expression data. A total of 581 genes, including 204 up-regulated genes and 377 
down-regulated genes, were screened out in PCa tissues compared with normal prostate tissues 
with the cut-off criteria p<0.05 and |log2FC|>1. Secondly, the Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed using 
DAVID database. Thirdly, protein-protein interaction (PPI) network of the DEGs was constructed 
by Cytoscape software. Modules in PPI network were screened using Molecular Complex Detection 
(MCODE). At last, 7 hub genes, ANXA1, CHRM3, UTS2, PROK1, AGT, CCK and EDN3 were 
identified from the modules of PPI network, and then validated by Oncomine database and Protein 
atlas database. In conclusion, our study suggested that the identified DEGs and hub genes promote 
our understanding of the molecular mechanisms underlying the development of PCa, and might 
reveal preliminary information with regard to carcinogenesis of prostate cancer.
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Introduction
Prostate Cancer (PCa) is one of the leading causes of cancer-related deaths among the men 

around the world [1]. Approximately 900,000 men were estimated to have been diagnosed with 
PCa in 2008 [2]. As to PCa of early stages, androgen-ablative therapy is considered as an effective 
therapeutic treatment. However, in those of later stages, PCa becomes androgen-independent and 
more invasive, with a resistance to androgen-ablative therapy and other chemotherapies [3,4]. 
Therefore, it is urgently needed to find effective biomarkers for diagnosis and treatment of PCa in 
order to improve patient survival rates.

Currently, the microarrays are widely used in molecular biology and viewed as a powerful tool 
with extensive applications, such as molecular classification of cancers, prediction of diagnosis 
biomarkers and discovery of new drug targets for cancer [5-7]. To date, gene expression profiling 
by microarray has been performed in recent years to uncover molecular variations between various 
tumor types vs. other tissue groups, revealing that hundreds of Differentially Expressed Genes 
(DEGs) enriched in various pathways and biological processes [8-10]. However, the studies related 
to comparative analysis of the DEGs between prostate cancer and normal prostate tissues were 
fewer. Therefore, in order to figure out the dysregulated mRNAs and their biological processes in 
PCa progression, we conducted microarray analysis using bioinformatics method to achieve this 
goal.

In the present study, microarray dataset GSE55945 was obtained from Gene Expression 
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) for subsequent analysis. This dataset included 
13 prostate cancer samples (with Gleason score of 6 or 7) and 8 normal prostate samples. Firstly, 
we performed a comparison between PCa samples (with Gleason score of 6 or 7) and normal 
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prostate samples to identify the Differently Expressed Genes (DEGs). 
Secondly, After the DEGs were screened using R software, we the 
conducted Gene Ontology (GO) and pathway enrichment to analyze 
their biological functions and related pathways. Moreover, to assess 
the interrelationships of DEGs, we used STRING database for analysis 
and Cytoscape software for visualization. In addition, hug genes were 
also identified and validated. The aim of study was to provide valuable 
information for PCa progression at molecular level and identifies the 
possible diagnostic and therapeutic biomarkers for PCa.

Materials and Methods
Data collection

Gene expression profile was downloaded from Gene Expression 
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/). 
Dataset GSE55945 was used to screen differentially expressed genes 
in this study. This dataset included 13 prostate cancer samples (with 
Gleason score of 6 or 7) and 8 normal prostate samples.

Data preprocessing
Raw expression data were calculated following the pre-processing 

procedures: RMA background correction, log2transformation, 
quantile normalization and median polish algorithm summarization 
using the “affy” R package. Probes were annotated by the Affymetrix 
annotation files. Microarray quality was assessed by sample clustering 
according to the distance between different samples in Pearson’s 
correlation matrices. No samples were removed from subsequent 

analysis in the two datasets (Figure 1A).

Differentially expressed genes (DEGs) screening
We use the “limma” R package to screen the DEGs between 

prostate cancer samples and normal prostate samples. The p value < 
0.05and |log2fold change (FC)| >1 were chosen as the cut-off criteria.

Functional and pathway enrichment analysis
The Database for Annotation, Visualization and Integrated 

Discovery (DAVID) (http://david.abcc.ncifcrf.gov/) is an online 

Figure 1: Samples clustering and identification of DEGs in PCa tissues. (A) Samples clustering of GSE55945 to detect outliers. (B) The volcano plot of all DEGs.

Figure 2: Bioinformatical analysis of DEGs. (A) GO analysis and (B) KEGG pathway enrichment of DEGs in PCa tissues. 

Figure 3: PPI network and hub genes. (A) Protein-protein interaction network 
of DEGs. Red color represents the upregulated genes while blue color 
represents the downregulated genes. The color intensity in each node was 
proportional to the degree of connectivity in the PPI network. (B) Hub genes 
identified using MCODE from the PPI network.
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program providing a comprehensive set of functional annotation 
tools for investigators to understand biological meaning behind large 
list of genes [11]. Enriched biological themes of DEGs, particularly 
GO terms and visualization of those on KEGG pathway maps were 
performed using DAVID database, p <0.05 was set as the cut-off 
criterion.

PPI network construction
We used Search Tool for the Retrieval of Interacting Genes 

(STRING) Database (STRING) (http://www.string-db.org/) to 
assess protein-protein interaction (PPI) information. In addition, to 
evaluate the interrelationships of DEGs, we used STRING database 
for analysis and Cytoscape software for visualization. Confidence 
score >0.4 was set as significant.

Hub module selection and validation
We used plug-in Molecular Complex Detection (MCODE) to 

select hub modules of PPI network in Cytoscape. Meanwhile, degree 
= 5, node score = 0.2, k-core = 2, and max. Depth = 100 were used 
as cut-off criteria. Then genes in hub module were validated by 
Onocomine database (http://www.oncomine.org/) and Protein atlas 
database (http://www.proteinatlas.org/).

Results
Identification of DEGs in PCa tissues

The gene expression profiling of GSE55945 including 13 PCa 
tissues (with Gleason score of 6 or 7) and 8 normal prostate tissues 
were analyzed. Using “limma” package of R software, selecting p 
<0.05 and |log2fold change (FC)| > 1 as the cut-off criteria, 581 
DEGs were identified, of which, 204 were up-regulated and 377 were 
downregulated. The volcano plot of all DEGs is shown in Figure 1B.

Functional and pathway enrichment analysis
To obtain further insight into the function of DEGs of PCa, the 

DEGs were uploaded to the DAVID database. GO analysis results 
showed that the DEGs were significantly enriched in Biological 
Process (BP), including epithelium development, limb development, 
appendage development, embryonic appendage morphogenesis, 
epithelial cell differentiation, embryonic limb morphogenesis, 
biological adhesion, proximal/distal pattern formation, cell adhesion 
and skeletal system development (Figure 2A). Moreover, seven KEGG 
pathways were overrepresented in DEGs, including Arrhythmogenic 
Right Ventricular Cardiomyopathy (ARVC), ECM−receptor 
interaction, focal adhesion, vascular smooth muscle contraction, 2 
drug metabolism pathway and glutathione metabolism (Figure 2B).

PPI network construction
Based on the string profile obtained from STRING, the PPI 

network of DEGs consisted of 276 nodes and 538 edges, including 78 
up-regulated genes and 198 down-regulated genes (Figure 3A).

Hub module selection and validation
Degree cut-off = 5, node score cut-off = 0.2, k-core = 2, and max. 

depth = 100 as the criterion, a significant module was selected, of 
which the score was 7 and had 7 nodes by using plug-in MCODE. The 
members in hub module includes Annexin A1 (ANXA1), Cholinergic 
Receptor Muscarinic 3 (CHRM3), Urotensin 2 (UTS2), Prokineticin 
1 (PROK1), Angiotensinogen (AGT), Cholecystokinin (CCK), 
Endothelin 3 (EDN3) (Figure 3B). Validation of the hub genes was 
performed by Oncomine database and Protein atlas database (Figure 
4).

Discussion
Prostate cancer is biologically heterogeneous and has a variable 

clinical course; therefore, it is essential to understand the molecular 
mechanism for better diagnosis and treatment of PCa. In this study, 
we investigated the gene expression profile of GSE55945, including 
13 PCa samples (with Gleason score of 6 or 7) and 8 normal prostate 
samples to explore the molecular mechanism of PCa and find some 
biomarkers, as a tumor suppressor or oncogene of PCa which could 
be helpful therapeutic targets using bioinformatics analysis.

Results show that expressions of total 581 genes were altered 
between normal prostate tissues and prostate cancer tissues at 
a p-value <0.05. Among the 581 DEGs, 204 were up-regulated 
and 377 were down-regulated. GO analysis results showed that 
the DEGs were significantly enriched in Biological Process (BP), 
including epithelium development, limb development, appendage 
development, embryonic appendage morphogenesis, epithelial cell 
differentiation, embryonic limb morphogenesis, biological adhesion, 
proximal/distal pattern formation, cell adhesion and skeletal system 
development. As to pathway enrichment, we found that those 
DEGs were significantly enriched in 7 pathways, related to signal 
transduction and tumorigenesis.

Then, we constructed the PPI network with DEGs and list the 
top degree hub genes: Annexin A1 (ANXA1), Cholinergic Receptor 
Muscarinic 3 (CHRM3), Urotensin 2 (UTS2), Prokineticin 1 
(PROK1), Angiotensinogen (AGT), Cholecystokinin (CCK), and 
Endothelin 3 (EDN3). Annexin A1 (ANXA1), is a member of a family 
of calcium-dependent phospholipid-binding proteins, possessing 
a wide range of physiological and pathological functions, some of 
whom have correlation to tumorigenesis. Paweletz CP “et al.” [12] 
firstly reported that ANXA1 expression was altered in prostate cancer 
by molecular profiling studies of human prostate cancer samples. In 
addition, Kang JS “et al.” [13] demonstrated that ANXA1 expression 
of prostatic intraepithelial lesions and early stage prostate cancer was 
decreased in >90%. Inokuchi J “et al.” [14] reported that the decreased 
ANXA1 expression plays a critical role in prostate carcinogenesis 
and enhancing tumor aggressiveness via the upregulation of IL-6 
expression and activity in vitro and Bizzarro V “et al.” [15] found 
that ANXA1 may be a key mediator of hypoxia-related metastasis-
associated processes in PCa.

Other studies suggested that ANXA1 might play an important 
role in acquisition and maintenance of a stem cell-like/aggressive 
phenotype in prostate cancer cells [16,17]. We also observed the 
differential expression of Angiotensinogen (AGT), the precursor 
of angiotensin I, involved in tumor angiogenesis and associated 
with the pathogenesis of coronary atherosclerosis. Choi JH “et al.” 
[18] reported the role played by AGT in endothelial progenitor cells 
(EPCs) in tumor progression and metastasis in angiotensinogen 
knockout mice. Urotensin 2 (UTS2), is a cyclic heptapeptide with 
a most potent vasoconstrictor activity, which has been documented 
in various tumors [19-23]. Grieco P “et al.” [24] reported that 
the receptor of Urotensin 2 (UTR) is involved in the regulation of 
motility of prostate adenocarcinoma cells and predicts the clinic 
outcome of PCa patients, which could be considered as a prognostic 
marker in human prostate adenocarcinoma patients. Cholinergic 
receptor muscarinic 3 (CHRM3), as a member of a large family of G 
protein-coupled receptors, could cause smooth muscle contraction 
and glandular secretion. Wang N “et al.” [25] found that autocrine 
activation of CHRM3 promotes prostate cancer growth and castration 

http://www.proteinatlas.org/
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Figure 4: Validation of hub genes. ANXA1, AGT and UTS2 expression at mRNA and protein levels were validated by Oncomine database and Protein atlas 
database, respectively. EDN3, CHRM3, CCK and PROK1 were also validated using Oncomine database.
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resistance via CaM/CaMKK-mediated Phosphorylation of Akt in vivo 
and in vitro. Prokineticin 1 (PROK1), as an angiogenic growth factor 
that is expressed merely in endocrine cells, including the adrenal 
gland, ovary, and testis. Pasquali D “et al.” [26] discovered that the 
expression levels of prokineticins and their receptors increased with 
prostate malignancy. Many studies had revealed that PROK1 was 
a growth factor for cancer cells, an angiogenic and a chemotactic 
factor for pro-inflammatory neutrophils, participating actively in 
carcinogenesis process [27,28]. Cholecystokinin (CCK), is a classic 
gut hormone, whose receptor plays a vital role in various of cancers 
[29,30]. Song Y “et al.” [31] reported that Mir-148b suppresses cell 
growth by targeting cholecystokinin-2 receptor in colorectal cancer 
in vivo and in vitro, which should be further evaluated as a biomarker 
and therapeutic tool against colorectal cancer. Endothelin 3 (EDN3), 
as a family of endothelin, plays a crucial role in cell differentiation, 
proliferation and migration processes [32,33]. Granchi S “et al.” [34] 
suggested that Endothelin-1 production by prostate adenocarcinoma 
cells is down-regulated by androgens and up-regulated by factors 
leading to tumor progression.

Overall, by using bioinformatics analysis, we have illustrated 
581 genes which may be involved in the progress of PCa, were 
differentially expressed in prostate cancer samples compared with 
normal controls. However, further molecular biological experiments 
are needed to confirm the function of the candidate biomarkers in 
PCa.
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