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Introduction
It has been observed that certain neuropsychiatric disorders, such as severe thought disturbances, 

show individual functional images in which it is possible to infer the existence of underlying 
neurobiological features, detectable through characteristic image patterns [1-6]. More precisely, 
schizophrenia-related spectrum conditions show inter-hemispheric asymmetries in metabolic 
activity, characteristic glucose uptake in prefrontal regions and temporo-occipital areas [7-22]. In 
addition, some other studies related to schizophrenia show abnormal patterns of glucose uptake in 
the Pale Globe and in the Claustrum [23-27].

Our group has been studying neural networks theories to help us understand the nature of 
mental functioning under normal and-certain- abnormal conditions. Among them, Post Traumatic 
Stress Disorder and Schizophrenia [6,27].

In this investigation we aimed to incorporate Artificial Neural Network theories as tools to help 
us detect the characteristic absorption patterns of glucose in the brains of subjects diagnosed with 
Schizophrenia. A brief reference to these theories proceeds.

In 1943 Warren McCulloch and Walter Pitts (psychiatrist and mathematician, respectively) 
published a paper entitled "A Logical Calculus of the Ideas Immanent in Nervous Activity", in 
which they communicated their research about the intrinsic logic of neural networks. In particular, 
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Abstract
Introduction: Schizophrenia-related spectrum disorders show functional images that permit 
to infer the existence of underlying neurobiological features: Inter-hemispheric asymmetries in 
metabolic activity, abnormal regional glucose absorption in prefrontal and temporo-occipital areas, 
basal ganglia, and claustrum, among others. We developed Artificial Neural Network (ANN) aids 
to help us detect cerebral absorption patterns of glucose in subjects diagnosed with Schizophrenia.

Methods: Positron Emission Tomography (PET) images of seven patients diagnosed with 
schizophrenia, with predominantly negative symptoms (Schz group) and seven matching control 
volunteers (Control group) were accessed and processed by means of the developed ANN software.

PET Scan: PET studies were acquired under resting conditions in Foundation School of Nuclear 
Medicine, Mendoza, Argentina.

Results: The diagnostic aid application was tested with ten randomized sets, formed by the two 
experimental groups, yielding highly compatible results with diagnostics obtained by trained 
psychiatrists. Test sensitivity=100%. Test specificity=95%.

Conclusions: At present, neuroimaging methods are used with reluctance for the purpose of 
psychiatric diagnostics, as since until now it had been difficult to detect specific metabolic absorption 
patterns for different nosological entities. According to our results, the ANN algorithms appear 
as promising tools for helping diagnose schizophrenia, and presumably, for diagnosing other 
neuropsychiatric disorders.
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they sought to elucidate the way in which memory can be stored and 
accessed in a system of interconnected neural networks, both in their 
natural forms and in their artificial theoretical models. This work is 
considered as a fundamental milestone for the further development 
of cognitive sciences and artificial intelligence [28].

From a biophysical point of view it is known today that the 
transmission of signals (information) from one neuron to another 
through the synaptic scaffolding is a complex electrochemical process 
in which certain neurotransmitter substances are released from the 
pre-synaptic neuron to the sites of reception of the post-synaptic 
neuron. The effect of this process-that is described here in a very 
simplified manner-is to raise or to decrease the electrical potential of 
the cell body of the recipient cell, and along with it, the frequency of 
production of action potentials. The vicissitudes of this phenomenon 
are closely linked to the degree of synaptic coupling between the two 
neurons [29].

What has been said is schematized in Figure 1, where I1, I2... In: 
represent the inputs generated by signals coming from pre-synaptic 
neurons, W1, W2... Wn: represent the synaptic weights (or strength of 
synaptic coupling between pre and post-synaptic neurons). The sum 
of all the products "signal times synaptic weight" is transferred to a 
comparative function of a “step” or “sigmoid” type, after which only 
those signals that have reached a certain threshold level are finally 
transferred to the output of the system.

McCulloch and Pitts showed how the artificial neurons that 
respond to this model have the ability to learn and to perform 
mathematical and logical operations, provided that in the neuronal 
model the synaptic weights-or the degree of synaptic coupling-are 
gradually modified according to a series of comparisons between the 
results obtained and the results expected to be obtained at the final 
output of the post-synaptic neuron. This is known as the learning 
algorithm [30,31]. In other words, after an iterative training process, 
the information incorporated by the neuron is recorded in its 
synapses, or to be even more precise, in the relationships between the 
weights of the concurrent synapses of the post-synaptic neuron. The 
ability of neural networks and systems to re-configure their internal 
connectivity is known as neural plasticity [32]. Figure 2 shows how 
a single artificial neuron can be programmed to operate as an AND, 
OR, or NOT computational gate, according to the value of its synaptic 
weights. Figure 3 illustrates the learning process of an artificial 
neuron, programmed to behave as an "AND" logic gate. In this graph 
it can be seen that, to the provided that the synaptic weights adopt 
the appropriate values, the processing errors (difference between 
the obtained and the expected record for the model) are gradually 
reduced to zero. When this happens the artificial neuron responds to 
the stimuli or input signals according to what is needed and it is said 
that the neuron has learned to perform the process for which it has 
been designed and trained.

Now, if several artificial neurons are interconnected, forming 
multi-layered networks, it is possible to configure computational 
models that are suitable for the recognition of complex patterns [33]. 
Figure 4 shows a neural network of feed-forward architecture that 
is known to be fully connected (each neuron transfers its output 
to all the neurons in the next layer), with an input layer of three, a 
hidden layer of four, and an output layer of two neurons. In this type 
of networks it has been also verified that the learned information is 
stored, in a distributed manner, in the relationships of the synaptic 
weights-or the coupling strength-that link different neurons.

To apply these theoretical models to the field of biology, still we 
need to show that the synaptic networks of real biological neurons 
are also reconfigured in accordance with learning experiences. A 
clear and elegant demonstration of this hypothesis can be found in 
Rose, who studied the neurobiological processes involved in learning 
in animal models, and described the way in which biochemical 
signaling-based on subjective experience-establishes changes in the 
synaptic coupling [34].

Artificial Neural Networks (ANN) have been used in several 
biomedical areas, specifically in Psychiatry, and related to certain 
diagnostic aspects of the Schizophrenia disorders [35-39].

To conduct this investigation we designed and trained an 
ANN to detect patterns of neural metabolic activity which could be 
considered as associated to patients diagnosed with schizophrenia, 
with a predominance of negative symptoms in the Positive and 
Negative Syndrome Scale (PANSS) [40]. The parameter which helps 
us for these diagnostics, is the output of the developed algorithm, this 
is the numerical level at the last neuron of the ANN. Thus, after the 
required number of iterations needed to complete the training stage, 
the software classifies the subject as a possible non schizophrenic 
subject when this parameter value is within the range from 0 to 0.3, 
and as a possible schizophrenic patient when this value is within the 
range from 0.7 to 1. After applying statistical grouping methods and 
performing various experimental tests upon the subjects’ images 
we compared the diagnostic results we obtained by means of the 
ANN with those of two trained psychiatrists and found significant 
concordances.

Figure 1: A simplified model of an artificial neuron as it was proposed by Mc 
Culloch and Pitts in 1943. The information is not stored in a single location, 
but in the distributed values of the concurrent synaptic weights (w1, w2,...wN).

Figure 2: Artificial neurons are models that demonstrate the way in which a 
neuron is able to "learn" to perform basic logical and mathematical operations 
by modifying the degree of synaptic coupling. For instance, as can be seen 
in this figure, a single artificial neuron can function as a logical computational 
gateway "AND", "OR" or "NOT" according to the values adopted by its 
synaptic weights.
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Methods
Subjects: A group of psychiatric patients was evaluated by two 

trained clinical psychiatrists through open and semi-structured 
personal and family interviews. Among them, 47 met the DSM-IV 
criteria for the diagnostic of schizophrenia, and were submitted 
to Positron Emission Tomography (PET) scanning, which was 
performed at resting conditions [41]. Subsequently, and after a 5 
day wash-out period, these 47 patients were evaluated through the 
PANSS [40]. PET images from those who had reached scores equal to 
or higher than 42 on the negative sub-scale of PANSS and lower than 
20 in the positive sub-scale were select to establish the image database 
for this investigation. PET images of seven patients were retrieved: 5 
from male subjects and 2 from female subjects, aged between 18 and 
67 years (m=39). Thereafter, seven control volunteers, with a similar 
gender distribution and age range between 23 and 49 years old (m=35) 
were recruited and submitted to PET scanning. These subjects did not 
meet the criteria for any psychiatric disorder diagnostic. Their PET 
images were needed to train and perform the experimental diagnostics 
through the ANN, complementing the images of the first group. After 
receiving a detailed explanation about the study, patients and control 
subjects signed the corresponding informed consent, approved by the 
Ethics Committee of the Nuclear Medicine School Foundation, and 
prepared in accordance with the Helsinski Declaration of 1964 [42].

Subject grouping: Using bootstrapping permutation techniques, 

and Monte Carlo randomizing techniques, ten experimental sets 
were generated for testing the diagnostic aid algorithm, each of them 
counting [43-45]:

a) Five subjects from the Schz group for training the system.

b) Five subjects from de Control group for training the system.

c) Two subjects from the Schz group for obtaining their 
diagnostics through the ANN.

d) Two subjects from the Control group for obtaining their 
diagnostics through the ANN.

PET Scan: PET studies were performed under baseline conditions, 
in a QUEST PET scanner (UGM Inc. PA, USA) of the Foundation 
School of Nuclear Medicine of Mendoza (FUESMEN) [46]. This 
PET Scanner is equipped with six detectors of Sodium Iodide (INa), 
arranged in hexagonal form, with extended axial field of 25.6 cm, and 
spatial resolution of 5.5 mm. The sensitivity of this instrument has 
been set at 400,000 kcps/microCi/ml. The scanner can handle up to 
5 mCi in the field of vision, at which point it reaches the maximum 
count. For biological studies, t reaches its maximum sensitivity for 
activities as low as 1.5 mCi in its field of vision [47].

The patients were accommodated in supine position on the 
scanner table which has a head support device. The skull was aligned to 
the center of the FOV by the cantomeatal line using a laser alignment 
system. Once in position, the patients were injected intravenously 
with 5 mCi of Fluoro-Deoxy-Glucose [F-18] FDG, with open eyes 
and ears without plugs, in a dim and silent environment. At the time 
of injection and during the 60-minute dynamic scan, arterialized 
blood samples (1 ml) were taken from the forearm to monitor the 
plasma concentration of [18]FDG.

Software: We developed a Backpropagation Neural Network 
Algorithm, with parameterizable number of inputs, hidden layer 
neurons, learning rate and iterations number [30,31,48]. The 
algorithm was trained with the images taken at the level Zmm=0 
referred to Talairach J and Tournoux P, from the two experimental 
groups [49]. The diagnostic signals of the ANN were contrasted with 
the diagnostics produced by the clinical psychiatrists. The results 
obtained by applying the developed algorithm are shown in Figure 5.

Algorithm parameters: The following parameters were used for 
image analysis:

a) Number of pixels of the training images (7680).

b) Number of training images to be used (10).

c) Number of hidden layer neurons to be used (150).

d) Learning rate (0.9753).

e) Number of iterations (420).

f) Show numeric values of initial weights (n(no)).

g) Method of generation of initial weights (4-Monte Carlo 
method).

h) Horizontal scale factor X (1).

i) Vertical expansion factor% (100).

j) Filename of initial weights (as input).

k) Filename of initial weights (as output).

Figure 3: Training session of an artificial neural network. Initially, a small 
random value is assigned to each synaptic weight, which is then "adjusted" 
by an iterative algorithm. As the weights reach the required values, the 
system errors tend to 0.

Figure 4: Multilayer neural networks are able to solve problems of greater 
complexity, such as recognition, classification, prediction and diagnosis.



Mario Enrique Molina, et al., World Journal of Psychiatry and Mental Health Research

Remedy Publications LLC. 2019 | Volume 3 | Issue 1 | Article 10194

l) Filename of final weights (as output).

m) Learn: Training stage (command).

n) Diagnose: Application or diagnostic stage (command).

Interface: 

1. The names of the images to be processed were entered in the Q 
area of the interface.

2. The parameters indicated in the previous section were entered 
in the R area of the interface.

The parameters a-e are described in Arbib, and are standard for 
feed-forward ANN architectures with supervised training using the 
Backpropagation Algorithm [30,31].

3. When selecting Diagnose, the training and diagnostic stages 
were sequentially executed.

4. The iterative reduction of the training errors E is plotted 
in the area "F" of the interface. In a characteristic training stage, a 
gradual approximation of all error dots to the "0" (zero) axis should 
be observed. For diagnostics to be valid, an Error level indicator E 
greater than 150 was required.

5. The M, N, O and P areas of the interface show the weighted 
topographic images. These are indicative of the neuroanatomical 
regions that the system considers, throughout its training, as relevant 
for the diagnostic process.

6. The diagnostic area (Zone "G" of the interface) shows the 
temporal evolution of the diagnostics of the subjects. The system 
allows the diagnostic of up to four subjects, simultaneously. The 
software classifies the subject as a possible non schizophrenic subject 
when this parameter value is within the range from 0 to 0.40, and as 
a possible schizophrenic patient when it is within the range from 0.60 

to 1.

7. If the convergence of errors to zero is slow, parameter d) 
"Learning Rate" can be increased. If the system shows oscillating error 
or diagnostic values, this parameter must be reduced.

Results
The software was tested with the ten experimental sets, which 

were established in random combinations as previously described, 
specifying 50 iterations, and obtaining the diagnostic results 
presented in Figure 6. Numerical values are shown in Figure 7, and 
a graphical distribution of them can be seen in Figure 8. In all cases 
it was possible to observe that the ANN produced appropriate error 
reduction plots and concordant diagnostics in relation to those of the 
evaluator psychiatrists, with only one exception: the experimental 
test #9, in which a normal subject reached a percentage of 55.92% 
in the diagnostic indicator parameter value, so the system was not 
able to classify it as part of the control group. However, the error 
parameter E warned this test did not reach the adequate error level to 
be considered reliable (242>150).

Sensivity and Specificity
According with Loong [50]:

Sensitivity=true positive × 100/(true positive+false negative)=20 
× 100/20+0=100%

Specificity=true negative × 100/(true negative+false positive)=19 
× 100/19+1=95%

Conclusions
At present, neuroimaging methods are used with reluctance for 

the purpose of psychiatric diagnostics, since it has been difficult to 
detect specific patterns to link images with unequivocally determined 

Figure 5: The developed algorithm: Qbot. Compare area F of this figure with Figure 3. The system detects the characteristic metabolic patterns of the disorder and 
the error curves converge to 0, which indicates that the algorithm can find specific activation patterns in the analyzed images. A and B: Training PET images, level 
0 (Talairach, 1988). C and D: First patient to diagnose. E: Final histogram of the weighted topographic image. F: Relative Errors of the algorithm. G: Diagnostics 
area. H: First patient to diagnose amplified. I: MRI reference. J, K and L: Learning process, numeric evolution, real time. L: histogram of the weighted topographic 
image, real time. M: weighted topographic image. N, O, and P: Auxiliar images, superimposed.
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nosological entities. However, by using the proposed algorithm, 
the diagnostics results obtained by this software are significantly 
concordant with the diagnostics produced by the intervening 
psychiatrists, also providing information about the areas that may 
be neurobiologically affected, through the topographic weighted 

Figure 6: Ten diagnostic results of the ANN, showing the weighted 
topographic images and the numerical diagnostics obtained results after 50 
iterations. E: parametric error level. Diagnostic indicator value for each tested 
subject: s2: Schz subject 2; s1: Schz subject 1; c2: Control subject 2; c1: 
Control subject 1. Values between 0 to 40% indicate control subject, between 
60% and 100%: schz patient. E must be<150 for this test to be valid.

Figure 7: Diagnostics result tests presented in table form, where it can be 
seen that the diagnostics generated by the software are clearly concordant 
to the diagnostics produced by the intervening psychiatrists. Values between 
0 to 40% indicate control group subject, between 60% and 100%: schz group 
patient.  Test number 9 is the only exception.

Figure 8: Diagnostics result tests presented in graphics form. Diagnostics 
generated by the software are clearly concordant to the diagnostics produced 
by the intervening psychiatrists. Values between 0 to 40% indicate control 
group subject, between 60% and 100%: schz group patient. Test number 9 is 
the only exception. For a test to be valid: E<150.

images. These considerations may be relevant when it comes to 
selecting therapeutic strategies linked to specific neurotransmitter 
systems characteristic of different brain regions. According to the 
results obtained, the algorithm appears as a promising tool for the 
diagnosis of schizophrenia. Further developments and trials are 
needed to determine the capabilities of this algorithm and to extend 
its application to other neuropsychiatric disorders.

This paper constitutes a Preliminary Report of the Research 
Project "Quantitative Electroencephalography in the Evaluation 
of Anxiety Disorders. Psychotherapeutic and Pharmacological 
Interventions". Research Department of the University of Mendoza, 
Hospital Escuela Carlos Pereyra, Mendoza, Argentina.

Acknowledgments
Roberto Isoardi, from Foundation School of Nuclear Medicine, 

processed the neuroimages to develop this investigation.

References
1.	 Shelton RC, Weinberger DR. X-ray computerized tomography studies in 

schizophrenia: a review and synthesis, in Handbook of Schizophrenia. The 
Neurology of Schizophrenia. 1986;1:207-50.

2.	 Altshuler LL, Conrad A, Hauser P, Li XM, Guze BH, Denikoff K, et al. 
Reduction of temporal lobe volume in bipolar disorder: a preliminary report 
of magnetic resonance imaging. Arch Gen Psychiatry. 1991;48(5):482-3.

3.	 Bandettini P. A short history of statistical parametric mapping in 
functional neuroimaging. The inception of SPM and modern-day brain 
mapping. 2008.

4.	 Lieberman JA, Andreasen N, Bilder R, et al. Methodologic issues in 
quantitative neuroimaging. Paper presented in annual meeting of the 
American College of Neuropsychopharmacology, San Juan, Puerto Rico. 
1992.

5.	 Lieberman JA, Bogerts B, Degreef G, Ashtari M, Lantos G, Alvir J. 
Qualitative assessment of brain morphology in acute and chronic 
schizophrenia. Am J Psychiatry. 1992;149(6):784-94.

6.	 Molina ME, Isoardi R, Prado MN, Bentolila S. Basal cerebral glucose 
distribution in long term post-traumatic stress disorder. World J Biol 
Psychiatry. 2010;11(2):493-501.

7.	 Andreasen NC, Nasrallah HA, Dunn V, Olson SC, Grove WM, Ehrhardt 
JC, et al. Structural abnormalities in the frontal system in schizophrenia: a 
magnetic resonance imaging study. Arch Gen Psychiatry. 1986;43(2):136-
44.

https://www.ncbi.nlm.nih.gov/pubmed/2021303
https://www.ncbi.nlm.nih.gov/pubmed/2021303
https://www.ncbi.nlm.nih.gov/pubmed/2021303
https://www.fil.ion.ucl.ac.uk/spm/doc/history.html
https://www.fil.ion.ucl.ac.uk/spm/doc/history.html
https://www.fil.ion.ucl.ac.uk/spm/doc/history.html
https://www.ncbi.nlm.nih.gov/pubmed/1590495
https://www.ncbi.nlm.nih.gov/pubmed/1590495
https://www.ncbi.nlm.nih.gov/pubmed/1590495
https://www.ncbi.nlm.nih.gov/pubmed/20218804
https://www.ncbi.nlm.nih.gov/pubmed/20218804
https://www.ncbi.nlm.nih.gov/pubmed/20218804
https://www.ncbi.nlm.nih.gov/pubmed/3947208
https://www.ncbi.nlm.nih.gov/pubmed/3947208
https://www.ncbi.nlm.nih.gov/pubmed/3947208
https://www.ncbi.nlm.nih.gov/pubmed/3947208


Mario Enrique Molina, et al., World Journal of Psychiatry and Mental Health Research

Remedy Publications LLC. 2019 | Volume 3 | Issue 1 | Article 10196

8.	 Andreasen NC, Ehrhardt JC, Swayze VW 2nd, Alliger RJ, Yuh WT, Cohen 
G, et al. Magnetic resonance imaging of the brain in schizophrenia. The 
pathophysiologic significance of structural abnormalities. Arch Gen 
Psychiatry. 1990;47(1):35-44.

9.	 Andreasen NC, Paradiso S, O’Leary DS. “Cognitive Dysmetria” as an 
integrative theory of schizophrenia: A dysfunction in cortical-subcortical-
cerebellar circuitry. Schizophr Bull. 1998;24(2):203-18.

10.	Berman KF, Weinberger DR. Lateralization of cortical function during 
cognitive tasks: regional cerebral blood flow studies of normal individuals 
and patients with schizophrenia. J Neurol Neurosurg Psychiatry. 
1990;53(2):150-60.

11.	Bogerts B, Ashtari M, Degreef G, Alvir JMJ, Bilder RM, Liberman JA. 
Reduced temporal limbic structure volumes on magnetic resonance 
images in first episode schizophrenia. Psych Res. 1990;35(1):1-13.

12.	Bogerts A, Falkai P, Degreef G, Liberman JA. Neurophatological and brain 
imaging studies in positive and negative schizophrenia. In: Maneros A, 
Andreasen NC, Tsuang MT. (eds) Negative versus Positive Schizophrenia. 
Springer, Berlin, Heidelberg. 1991;292-316.

13.	Bogerts B, Lieberman JA, Ashtari M, Bilder RM, Degreef G, Lerner G, 
et al. Hippocampal-amygdala volumes and psychopathology in chronic 
schizophrenia. Biol Psychiatry. 1993;33(4):236-46.

14.	Breier A, Buchanan RW, Elkashef A, Munson RC, Kirkpatrick B, Gellad 
F. Brain morphology and schizophrenia: a magnetic resonance imaging 
study of limbic, prefrontal cortex, and caudate structures. Arch Gen 
Psychiatry. 1992;49(12):921-6.

15.	Degreef G, Ashtari M, Bogerts B, Bilder RM, Jody DN, Alvir JM, et al. 
Volumes of ventricular system subdivisions measured from magnetic 
resonance images in first-episode schizophrenic patients. Arch Gen 
Psychiatry. 1992;49(7):531-7.

16.	Friston KJ, Liddle PF, Frith CD, Hirsch SR, Frackowiak RS. The left medial 
temporal region and schizophrenia. A PET study. Brain. 1992;115:367-82.

17.	Potkin SG, Alva G, Fleming K, Anand R, Keator D, Carreon D, et al. A 
PET study of the pathophysiology of negative symptoms in schizophrenia. 
Positron emission tomography. Am J Psychiatry. 2002;159(2):227-37.

18.	Tamminga CA, Thaker GK, Buchanan R, Kirkpatrick B, Alphs LD, Chase 
TN, et al. Limbic system abnormalities identified in schizophrenia using 
positron emission tomography with fluorodeoxyglucose and neocortical 
alterations with deficit syndrome. Arch Gen Psychiatry. 1992;49(7):522-
30.

19.	Weinberger DR, Berman KF, Zec RF. Physiologic dysfunction of 
dorsolateral prefrontal cortex in schizophrenia. Regional cerebral blood 
flow evidence. Arch Gen Psychiatry. 1986;43(2):114-24.

20.	Weinberger DR, Berman KF, Suddath R, Torrey EF. Evidence of 
dysfunction in of a prefrontal-limbic network in schizophrenia: A 
magnetic resonance imaging and regional cerebral blood flow study of 
discordant monozygotic twins. Am J Psychiatry. 1992;149(7):890-7.

21.	Weinberger DR. On Localizing Schizophrenic Neuropathology. Schizophr 
Bull. 1998;23(3):537-40.

22.	Goldman-Rakic PS, Selemon LD. Functional and anatomical aspects of 
prefrontal pathology in schizophrenia. Schizophr Bull. 1997;23:437-58.

23.	Early TS, Reiman EM, Raichle ME, Spitznagel EL. Left globus pallidus 
abnormality in never-medicated patients with schizophrenia. Proc Natl 
Acad Sci U S A. 1987;84(2):561-3.

24.	Early TS, Posner MI, Reiman EM, Raichle ME. Hyperactivity of the left 
striato-pallidal projection. Part I: Lower level theory. Psychiatr Dev. 
1989;7(2):85-108.

25.	Early TS, Posner MI, Reiman EM, Raichle ME. Left striato-pallidal 
hyperactivity in schizophrenia. Part II: Phenomenology and thought 
disorder. Psychiatr Dev. 1989;7(2):109-21.

26.	Kandel ER. Disorders of Thought and Volition: Schizophrenia. In: Kandel 
ER, Schwartz JH, Jessell TM (Eds). Principles of Neural Science. McGraw-
Hill; New York. 2000; p. 1195-6.

27.	Galeno R, Molina M, Guirao M, Isoardi R. Severity of Negative Symptoms 
in Schizophrenia Correlated to Hyperactivity of the Left Globus Pallidus 
and the Right Claustrum. A PET Study. World J Biol Psychiatry. 
2004;5(1):20-5.

28.	Abraham TH. Physiological circuits: the intellectual origins of the 
McCulloch-Pitts neural networks. J Hist Behav Sci. 2002;38(1):3-25.

29.	Preyer AJ. Coupling and synchrony in neuronal networks: 
Electrophysiological studies [dissertation]. Georgia Institute of 
Technology. 2007;94.

30.	Arbib MA, Prudence H, Arbib PH, editors. The Handbook of Brain Theory 
and Neural Networks. Second Edition. A Bradford Book. The Mit Press. 
Cambridge, Massachusetts. London, England. 2003.

31.	Arbib MA. Back propagation: General Principles. In: Arbib MA, Prudence 
H, Arbib PH, editors. The Handbook of Brain Theory and Neural 
Networks. Second Edition. A Bradford Book. The Mit Press. Cambridge, 
Massachusetts. London, England. 2003.

32.	Carlson NR. Physiology of Behavior. Allyn and Bacon. 1998;149-223.

33.	LeCun Y, Bengio Y. Pattern Recognition. In: Arbib MA, Prudence H, Arbib 
PH, editors. The Handbook of Brain Theory and Neural Networks. Second 
Edition. A Bradford Book. The Mit Press. Cambridge, Massachusetts. 
London, England. 2003.

34.	Rose SPR. Synaptic Plasticity: Molecular, Cellular, and Functional Aspects. 
Baudry M, Thompson RF, Davis JL, editors. MIT Press; U S A. 1993.

35.	Papik K, Molnar B, Schaefer R, Dombovari Z, Tulassay Z, Feher J. 
Application of neural networks in medicine - A review. Med Sci Monit. 
1998;4(3):538-46.

36.	Valafar F. Applications of Neural Networks in Medicine and Biological 
Sciences. In: Intelligent Control Systems Using Soft Computing 
Methodologies. CRC Press. 2001;96.

37.	Sporns O. Network Analysis, Complexity, and Brain Function. Complexity. 
2003;8(1):56-60.

38.	Galletly CA, Clark CR, McFarlane AC. Artificial Neural Networks: A 
Prospective Tool for the Analysis of Psychiatric Disorders. J Psychiatry 
Neurosci. 1996;21(4):239-47.

39.	Josin GM, Liddle PF. Neural network analysis of the pattern of functional 
connectivity between cerebral areas in schizophrenia. Biol Cybern. 
2001;84(2):117-22.

40.	Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale 
(PANSS) for schizophrenia. Schizophr Bull. 1987;13(2):261-76.

41.	American Psychiatric Publishing. Diagnostic and Statistical Manual of 
Mental Disorders DSM-IV-TR, 4th ed. 2000.

42.	World Medical Association. Declaration of Helsinki. Ethical Principles for 
Medical Research Involving Human Subjects. 2004.

43.	Müller KF. The efficiency of different search strategies in estimating 
parsimony jackknife, bootstrap, and Bremer support. BMC Evol Biol. 
2005;5:58.

44.	Mielke PW Jr, Berry KJ. Two-sample multivariate similarity permutation 
comparison. Psychol Rep. 2007;100(1):257-62.

45.	Fitzmaurice GM, Lipsitz SR, Ibrahim JG. A note on permutation tests 
for variance components in multilevel generalized linear mixed models. 
Biometrics. 2007;63(3):942-6.

46.	Shulman RG. Functional imaging studies: linking mind and basic 
neuroscience. Am J Psychiatry. 2001;158(1):11-20.

47.	Isoardi R, Mosconi S, Frías L, Noya E, Guirao M. Performance of a 3d 

http://www.ncbi.nlm.nih.gov/pubmed/2294854
http://www.ncbi.nlm.nih.gov/pubmed/2294854
http://www.ncbi.nlm.nih.gov/pubmed/2294854
http://www.ncbi.nlm.nih.gov/pubmed/2294854
https://www.ncbi.nlm.nih.gov/pubmed/9613621
https://www.ncbi.nlm.nih.gov/pubmed/9613621
https://www.ncbi.nlm.nih.gov/pubmed/9613621
https://www.ncbi.nlm.nih.gov/pubmed/2313303
https://www.ncbi.nlm.nih.gov/pubmed/2313303
https://www.ncbi.nlm.nih.gov/pubmed/2313303
https://www.ncbi.nlm.nih.gov/pubmed/2313303
https://www.sciencedirect.com/science/article/pii/092549279090004P
https://www.sciencedirect.com/science/article/pii/092549279090004P
https://www.sciencedirect.com/science/article/pii/092549279090004P
https://link.springer.com/chapter/10.1007/978-3-642-76841-5_19#citeas
https://link.springer.com/chapter/10.1007/978-3-642-76841-5_19#citeas
https://link.springer.com/chapter/10.1007/978-3-642-76841-5_19#citeas
https://link.springer.com/chapter/10.1007/978-3-642-76841-5_19#citeas
https://www.ncbi.nlm.nih.gov/pubmed/8471676
https://www.ncbi.nlm.nih.gov/pubmed/8471676
https://www.ncbi.nlm.nih.gov/pubmed/8471676
https://www.ncbi.nlm.nih.gov/pubmed/1449382
https://www.ncbi.nlm.nih.gov/pubmed/1449382
https://www.ncbi.nlm.nih.gov/pubmed/1449382
https://www.ncbi.nlm.nih.gov/pubmed/1449382
https://www.ncbi.nlm.nih.gov/pubmed/1627044
https://www.ncbi.nlm.nih.gov/pubmed/1627044
https://www.ncbi.nlm.nih.gov/pubmed/1627044
https://www.ncbi.nlm.nih.gov/pubmed/1627044
http://www.ncbi.nlm.nih.gov/pubmed/1606474
http://www.ncbi.nlm.nih.gov/pubmed/1606474
http://www.ncbi.nlm.nih.gov/pubmed/11823264
http://www.ncbi.nlm.nih.gov/pubmed/11823264
http://www.ncbi.nlm.nih.gov/pubmed/11823264
https://www.ncbi.nlm.nih.gov/pubmed/1627043
https://www.ncbi.nlm.nih.gov/pubmed/1627043
https://www.ncbi.nlm.nih.gov/pubmed/1627043
https://www.ncbi.nlm.nih.gov/pubmed/1627043
https://www.ncbi.nlm.nih.gov/pubmed/1627043
https://www.ncbi.nlm.nih.gov/pubmed/3947207
https://www.ncbi.nlm.nih.gov/pubmed/3947207
https://www.ncbi.nlm.nih.gov/pubmed/3947207
https://www.ncbi.nlm.nih.gov/pubmed/1609867
https://www.ncbi.nlm.nih.gov/pubmed/1609867
https://www.ncbi.nlm.nih.gov/pubmed/1609867
https://www.ncbi.nlm.nih.gov/pubmed/1609867
https://www.ncbi.nlm.nih.gov/pubmed/9327520
https://www.ncbi.nlm.nih.gov/pubmed/9327520
https://www.ncbi.nlm.nih.gov/pubmed/9327508
https://www.ncbi.nlm.nih.gov/pubmed/9327508
https://www.ncbi.nlm.nih.gov/pubmed/3467374
https://www.ncbi.nlm.nih.gov/pubmed/3467374
https://www.ncbi.nlm.nih.gov/pubmed/3467374
https://www.ncbi.nlm.nih.gov/pubmed/2695925
https://www.ncbi.nlm.nih.gov/pubmed/2695925
https://www.ncbi.nlm.nih.gov/pubmed/2695925
https://www.ncbi.nlm.nih.gov/pubmed/2695922
https://www.ncbi.nlm.nih.gov/pubmed/2695922
https://www.ncbi.nlm.nih.gov/pubmed/2695922
https://neurology.mhmedical.com/content.aspx?bookid=1049&sectionid=59138698
https://neurology.mhmedical.com/content.aspx?bookid=1049&sectionid=59138698
https://neurology.mhmedical.com/content.aspx?bookid=1049&sectionid=59138698
https://www.ncbi.nlm.nih.gov/pubmed/15048631
https://www.ncbi.nlm.nih.gov/pubmed/15048631
https://www.ncbi.nlm.nih.gov/pubmed/15048631
https://www.ncbi.nlm.nih.gov/pubmed/15048631
http://www.ncbi.nlm.nih.gov/pubmed/11835218
http://www.ncbi.nlm.nih.gov/pubmed/11835218
https://smartech.gatech.edu/bitstream/handle/1853/24799/preyer_amanda_j_200708_phd.pdf
https://smartech.gatech.edu/bitstream/handle/1853/24799/preyer_amanda_j_200708_phd.pdf
https://smartech.gatech.edu/bitstream/handle/1853/24799/preyer_amanda_j_200708_phd.pdf
https://mitpress.mit.edu/books/handbook-brain-theory-and-neural-networks-second-edition
https://mitpress.mit.edu/books/handbook-brain-theory-and-neural-networks-second-edition
https://mitpress.mit.edu/books/handbook-brain-theory-and-neural-networks-second-edition
https://mitpress.mit.edu/books/handbook-brain-theory-and-neural-networks-second-edition
https://mitpress.mit.edu/books/handbook-brain-theory-and-neural-networks-second-edition
https://mitpress.mit.edu/books/handbook-brain-theory-and-neural-networks-second-edition
https://mitpress.mit.edu/books/handbook-brain-theory-and-neural-networks-second-edition
https://trove.nla.gov.au/work/6645635?q&sort=holdings+desc&_=1559016059682&versionId=29170255
https://www.amazon.com/Handbook-Brain-Theory-Neural-Networks/dp/0262011972
https://www.amazon.com/Handbook-Brain-Theory-Neural-Networks/dp/0262011972
https://www.amazon.com/Handbook-Brain-Theory-Neural-Networks/dp/0262011972
https://www.amazon.com/Handbook-Brain-Theory-Neural-Networks/dp/0262011972
https://mitpress.mit.edu/books/synaptic-plasticity
https://mitpress.mit.edu/books/synaptic-plasticity
https://pdfs.semanticscholar.org/c316/2da18cb0287042e27ded932f944f2602c468.pdf
https://pdfs.semanticscholar.org/c316/2da18cb0287042e27ded932f944f2602c468.pdf
https://pdfs.semanticscholar.org/c316/2da18cb0287042e27ded932f944f2602c468.pdf
https://www.taylorfrancis.com/books/e/9781420058147/chapters/10.1201/9781420058147-13
https://www.taylorfrancis.com/books/e/9781420058147/chapters/10.1201/9781420058147-13
https://www.taylorfrancis.com/books/e/9781420058147/chapters/10.1201/9781420058147-13
http://eclectic.ss.uci.edu/~drwhite/Complexity/Net_Brain_final.pdf
http://eclectic.ss.uci.edu/~drwhite/Complexity/Net_Brain_final.pdf
https://www.ncbi.nlm.nih.gov/pubmed/8754592
https://www.ncbi.nlm.nih.gov/pubmed/8754592
https://www.ncbi.nlm.nih.gov/pubmed/8754592
http://www.ncbi.nlm.nih.gov/pubmed/11205348
http://www.ncbi.nlm.nih.gov/pubmed/11205348
http://www.ncbi.nlm.nih.gov/pubmed/11205348
http://www.ncbi.nlm.nih.gov/pubmed/3616518
http://www.ncbi.nlm.nih.gov/pubmed/3616518
https://olin.tind.io/record/123204/
https://olin.tind.io/record/123204/
https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/
https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/
http://www.ncbi.nlm.nih.gov/pubmed/16255783
http://www.ncbi.nlm.nih.gov/pubmed/16255783
http://www.ncbi.nlm.nih.gov/pubmed/16255783
http://www.ncbi.nlm.nih.gov/pubmed/17451033
http://www.ncbi.nlm.nih.gov/pubmed/17451033
https://www.ncbi.nlm.nih.gov/pubmed/17403100
https://www.ncbi.nlm.nih.gov/pubmed/17403100
https://www.ncbi.nlm.nih.gov/pubmed/17403100
http://www.ncbi.nlm.nih.gov/pubmed/11136626
http://www.ncbi.nlm.nih.gov/pubmed/11136626


Mario Enrique Molina, et al., World Journal of Psychiatry and Mental Health Research

Remedy Publications LLC. 2019 | Volume 3 | Issue 1 | Article 10197

petescaner with extended field of vision. Abstracts (11.17). XVI Alasbimn 
Congress on Nuclear Medicine 1999. Foundation School of Nuclear 
Medicine, Mendoza, Argentina. 1999.

48.	Hsiung S. Back propagation Algorithm. 1999.

49.	Talairach J, Tournoux P. Co-Planar Stereotaxic Atlas of the Human Brain. 
Thieme. 1988.

50.	Loong TW. Understanding sensitivity and specificity with the right side of 
the brain. BMJ. 2003;327(7417):716-9.

http://www.generation5.org/content/1999/nn_bp.asp
https://www.thieme.com/books-main/neurosurgery/product/414-co-planar-stereotaxic-atlas-of-the-human-brain
https://www.thieme.com/books-main/neurosurgery/product/414-co-planar-stereotaxic-atlas-of-the-human-brain
http://www.ncbi.nlm.nih.gov/pubmed/14512479
http://www.ncbi.nlm.nih.gov/pubmed/14512479

	Title
	Abstract
	Introduction
	Methods
	Results
	Sensivity and Specificity
	Conclusions
	Acknowledgments
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8

