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Editorial
The pathogenesis of epilepsy is poorly understood; therefore it is necessary to identify the 

critical processes that link an initial brain defect or an early convulsive insult to the subsequently 
manifesting spontaneous seizures. These critical processes need 1 year to 20 years in man, or 2 weeks 
to 5 weeks in rodents [1]. Clinical observations prove that repeated, unprecedented convulsions 
increase the risk of the development of epilepsy [2]. Some forms of epilepsy arise as an imbalance 
between excitatory and inhibitory neurotransmission in different regions of the CNS, where local 
neuroplasticity changes are induced by the seizures [3]. Therefore, it is fundamentally important to 
understand the molecular and cellular processes underlying local neuronal plasticity, which push 
the accidental seizures to a chronic, recurrent disease [1-3]. Apart from local neuroplasticity from 
repeated excitatory episodes, repeated brain swelling [4] and brain vascular damage [5,6] could also 
contribute to chronic, degenerative epilepsies. Glutamate Receptors (GluRs) mediate the majority 
of excitatory responses in the central nervous system and they are involved in the induction 
and maintenance of epileptic states [7]. The establishment and activity induced refinement of 
glutamatergic synaptic connections depend on the concerted actions of the ionotropic α-Amino-
3-Hydroxy-5-Methylisoxazole-4-Propionate (AMPA), N-Methyl-D-Aspartate (NMDA) and 
Kainate Acid (KA) type Glutamate Receptors (iGluRs). The most is known about the mechanisms 
by which the iGluR subtypes are expressed, targeted and the way this is influenced by synaptic 
activity on both short and long time scales [8]. Changes in iGluR subunit compositions are input 
specific and regulated by the neuronal activity [8,9]. Several studies reported changes in NMDA 
and AMPA receptor subunit expression following deafferentation [9] and following repeated 
seizures [10] (Table 1). The aim of the present editorial is to point out to the possible pathogenic 
importance of the changes in the expression and molecular organization of iGluRs in acute and 
chronic models of epileptogenesis. The reference experiments with combinations of biochemical, 
electrophysiological and immunocytochemical methods were performed in our laboratories [9-19]. 
We tested the hypothesis that repeated, acute seizures lead to the redistribution of iGluR subunits in 
cerebrocortical tissues. The alterations of the subunit composition of the iGluRs served the adapting 
of the neuronal circuits to the increase of the excitatory inputs – but the alterations may also cause the 
permanent increase in the vulnerability of the neurons. Some changes of the iGluRs could have been 
contributed to the recurrence of the increased excitation seizures. Using the pilocarpine epilepsy 
model in mice, we investigated whether a similar rearrangement in iGluR subunit composition 
could have been caused by the chronic, recurrent epileptic fits [11,20]. The potassium channel 
blocker 4-Aminopyridine (4-AP) was used to induce acute Generalized Tonic Clonic Seizures 
(GTCS) in rats and mice [12]. Our research group contributed to the characterization of the acute 
4-AP epilepsy with the autoradiography densitometry and magnetic resonance analysis of the strong 
increase of regional cerebral blood flow [13,15]. We also detected the seizure-concomitant increase 
of glutamate release in the striatum with in vivo micro dialysis [14]. The GTCS precipitated by 4-AP 
resulted in widespread nuclear c-Fos expression in principal neurons and parvalbumin-positive 
interneurons of the cerebral neocortex and hippocampus [15,16], indicating the involvement of 
NMDA receptors in the gene expression regulation [21]. Furthermore, the pharmacological analysis 
of the GTCS, using NMDA- and AMPA receptor antagonists proved, that the pharmacological 
antagonism of the NMDA- and AMPA receptors decreased the neuronal expression of c-Fos 
significantly [17,18]. Daily administration of 4-AP to Wistar rats caused repeated GTCS events for 12 
days: the repeated GTCS events changed the hippocampal iGluR subunit composition permanently 
[10]. Most prominently, we observed the down regulation of the AMPA receptor subunit GluR2, 
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and a concomitant increase of the kainic acid stimulated in vitro Co2+ 
uptake in the CA1 region of the Ammon’s horn and in the dentate 
gyrus [10]. The down regulation of the GluR2 subunit indicated that 
following the repeated seizures neuronal AMPA receptors became 
permeable to cations, because the GluR2 subunit was responsible 
for the control of Ca2+ influx [10]. In pilocarpine epilepsy, neuronal 
degeneration and synaptic rearrangement take place in the Ammon’s 
horn and in the dentate gyrus [21,22]. The rodent pilocarpine epilepsy 
model was used to induce chronic, recurrent motor convulsions 
[11,17]. Several (3-7) months after the pilocarpine treatment, the 
reacting mice were characterized by the degeneration of the neurons 
of the Ammon’s horn (Figure 1), proliferation of astrocytes and 
microglia [23]. Immunohistochemistry of the iGluR subunits proved 
the significant down regulation of the AMPA subunits GluA1 and 
GluA2 in the dentate gyrus and in the synaptic layers of the Ammon’s 
horn [11]. The question arose whether the repeated convulsions in 
these pilocarpine-treated animals have been specifically targeting the

1. Rearrangement of the iGluR’s.

2. The synthesis of new subunit proteins.

3. The synthesis of regulatory postsynaptic proteins, which finally 
change the arrangement and insertion of the different subunits 
in the postsynaptic membrane [8]. Apart from these molecular 
plasticity events, repeated convulsions caused damage to the Blood-
Brain Barrier (BBB) [5,6,24] allowing some T-lymphocytes to enter 
into the brain [25]. This may trigger a slowly developing chronic 
inflammatory process, which can maintain the neurodegeneration, 
and finally result in hippocampal sclerosis [11,19,22]. We think that 
the repeated GTCS events increased the vulnerability of the neurons 
in many ways – the vulnerability could have been increased through 
the down regulation of the GluA2 subunit which normally inhibits 
the Ca2+ influx following synaptic excitation [10]. The increase of 
the calcium permeability of the iGluRs can lead to slowly developing 
neuronal death (neurodegeneration) in case of the repeated seizures. 
The end-result of neurodegeneration will be the hippocampal 
sclerosis, what we see in some rodents following 3 months to 7 
months of recurrent pilocarpine convulsions [11,23] (Figure 1). 
The BBB damage and T-cell entry [6,24,25] may trigger an ongoing 

chronic inflammation, which together with the iGluR alterations will 
result in neuronal damage and severe glial proliferation, gradually 
decreasing the number of the functioning neurons in some of the 
CNS regions [11,22]. Comparison of the receptor subunit alterations 
of iGluR’s in the dentate gyrus in chronic deafferentation (ablation of 
the lateral entorhinal cortex in rats), in repeated 4-AP convulsions in 
rats and in pilocarpine epilepsy in mice. The subunits were analyzed 
through densitometry of immunohistochemical tissue sections [11] 
and histoblot preparations [9,10].
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Table 1: Comparison of the receptor subunit alterations of iGluR’s in the dentate gyrus in chronic deafferentation.

Figure 1: Polyclonal Neu-N antibody immunostaining of the coronal brain sections of the control NMRI mouse (A) and the pilocarpine-treated animal (B). The 
animals were sacrificed three months following the pilocarpine treatment. Note that the hippocampus of the pilocarpine treated mouse displays widespread 
neurodegeneration (arrows) in the Ammon’s horn (CA 1, CA 2, CA 3, CA 4). This is hippocampal sclerosis [23]. Bar: 500 µm.
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