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Exercise and Enrichment Recruit Positive Factors for 
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Short Communication
The hippocampus plays critical roles in consolidation of information from short- to long-term 

memory, as well as spatial navigation, which are defined as cognitive function. A number of lifestyle 
interventions are proven to be cognitive enhancers, such as physical exercise, Environmental 
Enrichments (EE) including mental stimulation, social stimulation, such as reading a favorite 
book, playing games, participation in group activities or a targeted cognitive training. These 
non-pharmacological cognitive enhancers circumvent the ethical considerations associated with 
pharmaceutical or technological cognitive enhancement. Meanwhile, they are low in cost and low 
risk to health and well-being. The effects of exercise and EE on enhancing cognitive function have 
been attributed to the hippocampal plastic changes including neurogenesis, synaptogenesis and 
angiogenesis. Some of the cellular mechanisms, such as the increased expression of growth factors, 
signal pathway, likely underlie each of these changes. 

Neural Stem/Progenitor Cells (NSPCs), the major role in neurogenesis, are present throughout 
life in the Subgranular Zone (SGZ) of Dentate Gyrus (DG) and Subventricular Zone (SVZ). 
Approximately 700 newborn granular neurons are formed every day in the adult human DG [1]. 
NSPCs in the SGZ differentiate into the granular cells which anchor within the granular layer of 
the DG establishing synaptic connections with the neighbor neurons to maintain the hippocampal 
functions. It has been reported that exercise exerts positive effect the adult hippocampal neurogenesis 
in all aspects, including cell proliferation, survival, differentiation and recruitment in the DG [2-5]. 
Researchers discovered that exposure to EE also showed significantly high differentiation of newborn 
cells into granular neurons in hippocampus [6,7]. More recently, several reports suggested that the 
notable EE-induced increase in adult neurogenesis was attributed to physical activity associated with 
exercise [8,9]. 

Formation of new synapses is much critical to store new information in the brain. Granular 
cells in the DG sprout mossy fibers targeting and forming synaptic connect with neurons in the 
Cornu  Ammonis 3 (CA3) area of the hippocampus, which is an important part of the neural 
trisynaptic circuit in maintaining cognitive function. It has been reported that exercise significantly 
increased the levels of synaptic vesicle proteins synaptophysin and synapsin-I indicating the 
exercise-induced synaptogenesis [10-12]. As well, the common exercise running increases the 
density of dendritic spines and mossy fibre sprouting in granule cells in DG and CA1 pyramidal 
neurons in hippocampus and layer III pyramidal neurons in entorhinal cortex [13,14].

There are evidences to support the exercise or EE-induced angiogenesis in the hippocampus, 
motor cortex and cerebellum [2,15-18]. It has also been suggested that angiogenesis increases 
circulation which deliver more nutrient metabolites, hormones, growth factors and oxygen to the 
cognition-related brain regions, and also facilitate metabolic waste disposal, leading to increased 
cell survival and enhanced neurogenesis [19]. Thus, angiogenesis could be another key mechanism 
mediating exercise or EE-induced cognitive enhancement (Figure1).

According to the studies, it is speculated that the molecules such as nutrient metabolites, 
hormones, growth factors and oxygen in circulation or the local brain region may attribute to 
the exercise or EE-induced hippocampal plasticity. The following potential trophic factors whose 
expression can be induced by exercise and EE likely show the critical effects during the plastic 
processes. 

Brain-Derived Neurotrophic Factor: Studies have shown that exercise significantly increases 
peripheral and central levels of Brain-Derived Neurotrophic Factor (BDNF) [20-22], which have 
been reported to be involved in several functions such as enhancing neuronal survival, neurogenesis 
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and cognition [21,23]. BDNF administration can induce a form of 
LTP and improve hippocampus-dependent learning [24-26]. BDNF 
is able to regulate neuronal growth and survival, which was reported 
to be involved in the exercise-increased brain’s resistance to damage 
and degeneration [27]. BDNF was found to be robustly involved 
in neurogenesis because the neurogenesis was attenuated by BDNF 
knockdown in the adult DG, but increased in response to exogenous 
BDNF injection [28,29]. Dendritic growth in adult hippocampal 
neurons was also decreased after BDNF deletion and increased after 
BDNF overexpression [30]. The evidences indicate that exercise-
induced synaptogenesis may be a BDNF-dependent process [10-12]. 

Basic Fibroblast Growth Factor: In the adult CNS, the basic 
Fibroblast Growth Factor (FGF-2) and its receptors (FGFR) are 
expressed by astrocytes and neurons located in the SVZ and SGZ, as 
well other brain regions [31,32]. After birth, FGF-2 is concentrated 
primarily in the hippocampal subfields CA1-3, and in neurons of 
the medial septum and the vertical limb of the diagonal band nuclei. 
Within the mature hippocampus, the CA2 region is the primary 
area of neuron-derived FGF-2 expression [33], suggesting that 
FGF-2 may play a role in the development and function of the adult 
hippocampus. Studies suggested that exercise and EE both increased 
peripheral and central level of FGF-2, which showed the positive effect 
on hippocampal neurogenesis. For example, loss of FGF-2 in animals 
caused decrease in adult hippocampal neurogenesis. However, these 
defects could not be rescued by exogenous FGF-2 [34]. Yoshimura 
et al. reported that hippocampal neurogenesis increased in normal 
adult mice after brain injury, but this phenomenon did not appear 
in FGF-2 knockout adult mice [35]. These results indicated that 
endogenous FGF-2 is necessary to stimulate neurogenesis in the 
adult hippocampus. Genetic deletion of FGFR1 resulted in reduced 
proliferation of hippocampal NSPCs and reduced hippocampal 
volume during embryonic and postnatal development [36]. These 
studies suggested that the FGF-2/FGFR system mediates neurogenesis 
in the adult hippocampus. FGF-2 is also a strong pro-angiogenic factor 
acting as a stimulator of endothelial cell migration, proliferation, 
sprouting, and tube formation [37,38]. FGF-2  was also proven to 
be able to enhance hippocampal  synaptogenesis, including  increase 
of excitatory synapses and synaptic cycling vesicles on hippocampal 
neurons [39]. 

Nerve Growth Factor: Early studies confirmed that Nerve Growth 
Factor (NGF) is crucial for neuronal survival and growth, especially 
the cholinergic neurons, and neurotransmission in both the CNS 
and peripheral nervous system [40,41]. Recent reports indicated that 

continuous NGF infusion promotes proliferation and synaptogenesis 
in the hippocampus and enhanced survival of new neurons in the DG 
granule cell layer of young adult rats [42,43]. Neurogenic conditions in 
the hippocampus may be enhanced by the synergistic interactions of 
NGF and its receptor, TrkA, as well as by NGF-mediated cholinergic 
regulation. Finally, intracerebroventricular NGF infusion rescued 
hippocampal neurogenesis deficiencies in a transgenic mouse model 
of Huntington’s disease [44], suggesting that the effects of NGF on 
neuroplasticity likely support the treatment of this disease through 
exercises or EE.

Insulin-like Growth Factor 1: IGF-1, primarily produced in 
the liver, plays a major role in brain development. It may link the 
systemic and the central changes induced by exercise. IGF-1 deletion 
or blockage of its receptors markedly impaired exercise-induced 
cognitive enhancement that would be ameliorated by exogenous 
IGF-1 administration [11,45]. Reports showed that IGF-1 directly 
or indirectly improves the proliferation, survival, and neuronal 
differentiation of NSPCs, as well prevents their apoptosis in the 
SGZ of the adult mammalian [46-48].  Zhu and colleagues not only 
demonstrated its neurotrophic property, but also showed that IGF-
1  could enhance neurovascular regeneration in a mouse model of 
permanent focal cerebral ischemia [49].  The evidences that IGF-1 
stimulates an increase in the density of spines in the basal dendrites 
of CA1 pyramidal neurons while a decrease in the serum IGF-I levels 
causes a reduction of glutamatergic boutons in the hippocampus 
[50,51]. This finding suggests that IGF-I can promote hippocampal 
synapse formation and/or maintenance.

Vascular Endothelial Growth Factor: Peripheral Vascular 
Endothelial Growth Factor (VEGF) is mainly produced by skeletal 
muscles. Exercises can increase level of VEGF in skeletal muscle and 
hippocampus [52]. However, effect of exercise on VEGF expression 
in the hippocampus is very little. Peripheral VEGF must cross the 
Blood-Brain Barrier (BBB) to show the functions in the brain. The 
BBB permeability may increase in response to exercise, providing a 
potential route for signaling proteins to enter the brain parenchyma 
from the circulation. VEGF is a strong angiogenesis factor, as well 
shows neurotrophic and neuroprotective effects [53-56]. 

As the most important mitogen in the process of angiogenesis, 
VEGF  plays a role in the angiogenic effects of exercise [57,58]. 
Pharmacological blockade of angiogenesis in the hippocampus 
impairs spatial learning [59]. The angiogenesis is mediated by the 
binding of VEGF to its receptors on the surface of endothelial cells 

Figure:  The trophic factors mediate exercise and EE-induced cognitive enhancement.
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through activation of intracellular tyrosine kinases and the multiple 
downstream signals. 

In concert with the neurogenesis, VEGF also play an important 
role in exercise-induced adult hippocampal neurogenesis because 
the increased number of newborn neuronal precursor cells in 
the hippocampus were not present in adult conditional skeletal 
myofiber-specific VEGF gene-ablated mice [60,61], suggesting that 
VEGF expressed by skeletal myofibers may directly or indirectly 
regulate hippocampal neurogenesis. In addition, VEGF secreted in 
the adult hippocampal NSPCs are known to functionally maintain 
the neurogenic niche [62]. Specific loss of VEGF in NSPC resulted 
in impairment of stem cell maintenance although VEGF produced 
from other cell types was still present [62]. Evidence from knockout 
mice indicated that hippocampal neurogenesis was impaired in VEGF 
B-KO mice, whereas intraventricular administration of VEGF B 
restored neurogenesis to control levels [63]. These findings suggested 
that VEGF is involved in neurogenesis in the adult hippocampus. 
Indeed, increasing evidence has shown that VEGF acts as a molecular 
mediator for adult hippocampal neurogenesis and is upregulated by 
antidepressant treatments including drugs, electroconvulsive seizure 
[64,65], exercise, and enriched environments [66,67], indicating that 
VEGF is a promising target for treatment of neural disorders.

In conclusion, the processes of neurogenesis, synaptogenesis 
and angiogenesis are known as the main mechanisms mediating the 
exercise or EE-induced cognitive enhancement. The upregulation 
of these factors may be the critical molecules promoting the above 
processes. Certainly, it appears that exercise or EE simultaneously 
stimulates upregulation of several growth factors who would exert 
the angiogenic, neurogenic and synaptogenic promotion effects at the 
same time. Keeping exercises and enrichments keep youth.
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