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Mini Review
In recent times naturally occurring therapeutically active biomolecules and secondary plant 

products have gained attention largely due to their potent therapeutic actions. This led to screening 
of plethora of natural products finding their utility in diverse disorders such as cancer, malaria, 
diabetes, urinary disorders, and joint disorders. Numerous naturally obtained drugs such as quinine, 
penicillin, theophylline, vincristine, doxorubicin, digoxin, morphine and paclitaxel are cornerstones 
of pharmaceutical care. Natural products having beneficial effects on brain functions are particularly 
sought after due to lack of potent and safe drugs for various CNS ailments including psychiatric 
disorders (e.g. depression, anxiety, psychosis) and neurodegenerative disorders (e.g. Alzheimer’s 
disease, Huntington’s disease, dementia). Several classes of natural products such as flavonoids, 
tannins, phenols, and terpenes have undergone intensive stuffy for their activities on brain. Many 
of these natural products are still under clinical trials. In this review we will focus on two naturally 
occurring molecules (ellagic acid and caffeic acid phenethylester) that have most recently received 
significant focus due to their beneficial actions on brain.

Ellagic Acid
Ellagic acid is a polyphenol compound abundantly present in berries (strew berry, raspberry, 

cloudberry, and blueberry), grapes, pomegranate, almonds, walnuts, and beverages [1]. EGA and 
EGA enriched extracts such as Ellagic Active tablets®, PomActiv™ and Biotech Nutritions Ellagic 
Acid Capsules® are widely consumed as dietary supplements owing to its health promoting 
activities [2]. EGA (2,3,7,8-tetrahydroxy[1]-benzopyranol[5,4,3-cde]benzopyran-5,10-dione) 
is a lactonised product (four hydroxyl groups and two lactone groups) of sugar (mostly glucose) 
esterified hexahydroxydiphenoic acid complexes (e.g. ellagitannins). In Gastro Intestinal Tract 
(GIT) ellagitannins are hydrolytically converted to EGA upon dietary consumption of whole 
fruits. EGA and ETs are converted to urolithins (dibenzopyranones) aided by pH and gut micro 
biota, and urolithin A and B have been detected in intestine [3,4]. Systemically EGA is metabolised 
through glucuronidation, catechol-O-methyl transferase and conversion to urolithin A, B, C and D. 
Although the bioavailability of EGA from whole fruit is reported low, however, several studies depict 
that EGA is widely distributed in body and significant amounts are detected in brain tissue upon 
oral consumption of EGA enriched extracts [5]. The bioavailability of EGA is comparable to that of 
resveratrol and significantly higher than choloro genic acid [6]. Despite of limited lipophilicity EGA 
(weak acid) is absorbed mostly from upper GIT (~1-2 h), has a half-life of ~ 8.4 ± 1.8 h and ~50% 
plasma-protein binding [7,8]. After (~1 h) the oral intake of 400 mg pomegranate extract (330 mg 
ETs and 22 mg EGA) the presence of free EGA in the plasma of human subjects (concentration 33 
ng/ml) have been detected. EGA is detectable in plasma ~ 30-60 min after intake of pomegranate 
juice by human volunteer (Cmax 31 ng/ml) and rats (concentration 93.6 ng/ml) [9,10].

Several studies demonstrated that pomegranates, berries and walnuts possess potent health 
promoting properties mostly attributed to EGA. EGA has shown anti atherogenic [11], anti-
thrombotic [12], anti-diabetic [13], anti-obesity [14], antihypertensive [15], Hepato protective [16], 
antioxidant [17], anti-inflammatory [18], neuro restoration [19] and immuno modulatory [20] 
activities in pre-clinical studies [21,22]. Several evidences indicate that EGA targets the adipogenic 
markers (e.g. PPARγ and Kruppel-like factor 4/5), suppresses the adipogenic genes (e.g. fatty acid 
synthase, fatty acid–binding protein 4), and activate AMPK and cholesterol efflux mechanisms 
[23]. Attenuation of hyper lipidemia by EGA is demonstrated in transgenic (C57BL/6J/HFD mice) 
and non-transgenic (streptozotocin) animal models that may afford therapeutic benefits in AD. 
The EGA induced activation of AMPK vitalizes the glucose metabolism in diabetic rats [24]. The 
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significant bioactivities of EGA prompted its use as nutraceutical 
in different food supplements [25]. The modulation of cholinergic 
function and LTP in brain indicates the neuroprotective ability of 
EGA [26-28]. EGA potently inhibits the AChE activity (IC50 ~ 13.79 
μg/mL) and thereby up regulates the cognitive abilities through 
acetylcholine [29,30]. EGA has shown therapeutic benefits in 
experimental models of depression. EGA modulates the brain mono 
aminergic and GABA ergic transmission that have profound effects 
on learning and memory. The facilitation of serotonergic and nor-
adrenergic transmission in brain is correlated with anti-depressant 
activity of EGA [31].

The reduction in Aβ40-42-plaque deposition in brain and 
improvement in memory of rodents by pomegranate juice [32] and 
walnut extracts [33] has been attributed to EGA. The prevention of 
Aβ-peptide neurotoxicity [5], fibrillar aggregation of Aβ-peptides in 
brain [34] and inhibition of BACE-1 activity [35,36] are associated 
with EGA. A recent study demonstrated that EGA protects from 
Aβ25-35 neurotoxicity in rats. The Aβ25-35 induced elevation in oxidative 
stress, inflammation (NFκB activity) and AChE activities were 
significantly abrogated by EGA in rat brain. EGA reduced the cerebral 
infarct size and improved the memory of rats in passive avoidance 
and radial arm maze tests [37]. The antioxidant activity of EGA is 
due to direct free radical scavenging property and potentiation of 
endogenous antioxidants like NADPH: quinone oxido reductase 1 
(NQO1), heme oxygenase-1(HO-1), GSH, SOD, catalase, glutathione 
reductase and glutathione peroxidase [38]. The hydroxyl group 
and lactone ring directly detoxify superoxide, hydroxyl free radical, 
hydrogen peroxide and per oxy nitrites [39]. EGA positively regulates 
the Nrf2 pathway which is a downstream target of PI3-kinase-Akt 
signalling and negatively regulates the Nrf2 repressor Kelch-like 
ECH-associated protein 1 (Keap1) [40]. EGA can protect the brain 
from inflammation by down regulating he expression of several pro-
inflammatory cytokines (e.g. TNF-α) [41]. A number of evidences 
indicate that EGA negate the activities of iNOS, COX-2, 5-LOX, 
ICAM-1 and VCAM-1 [5]. The suppression of overt microglial 
response portrays the therapeutic benefit of EGA in AD. In vivo and 
in vitro studies supported the EGA induced inhibition of release of 
inflammatory cytokines by microglia and amyloid-plaques in APP/
PS1 transgenic mice model and cultured primary murine cortical 
microglia [42]. Several reports suggest that EGA suppresses the NFκB 
pathway in different experimental models of cancer, renal, lungs and 
liver diseases [39].

In vitro treatment with EGA (30 micro molar) shows protection of 
rat brain astrocytes against cadmium (Cd2+) toxicity [43]. The chelation 
of metal ions by EGA is involved in protection of nickel induced 
oxidative stress [44]. The anti-apoptotic and anti-inflammatory effects 
of EGA are attributed to modulation of PI3-kinase-Akt signalling 
[45]. The ability of EGA to restore the endothelial dysfunction in mice 
depicts involvement of eNOS which is a key downstream effector of 
PI3-kinase-Akt pathway [46]. Administration of EGA ameliorated 
the scopolamine and diazepam triggered memory deficits in rats [27]. 
In streptozotocin diabetes model EGA (50 mg/kg) prevented the 
progression of neuro degeneration. The STZ induced oxidative stress 
and lipid peroxidation was potently suppressed by EGA in rat brain 
[47]. The 2,3,7,8-Tetrachlorodibenzo-P-Dioxin (TCDD)-induced 
lipid peroxidation and genotoxicity in rat hippocampus were also 
prevented by EGA (1 mg/kg, p.o.) [48].

Amelioration of Bcl-2/Bax ratio in rat brain by EGA abates the 
ischemia induced neuron damage. EGA enhances the neuron viability 

in ischemic rats which highlights the involvement of PI3-kinase-Akt 
pathway [49]. In a novel photo thrombosis-induced model of brain 
injury in rats EGA imparted protective effects on nerves and abated 
the morphological changes and infarct volumes in brain of rats [19]. 
The inhibition of GSK-3β and FoxO transcriptional activity by EGA 
also implies the role of Akt signalling in EGA action. Furthermore, 
existing evidences indicate that EGA modulates several pathways 
such as MAPK, PPARγ, JNK1/2, NOTCH and STAT that bear 
significant impact on brain functions [39]. The present data suggests 
that EGA may hold benefits in the management of AD type dementia.

Caffeic Acid Phenethyl Ester (CAPE)
Caffeic acid phenethyl ester (2-phenylethyl (2E)-3-(3,4-

dihydroxyphenyl) acrylate; C17H16O4) is bioactive polyphenol present 
in honey and propolis of honeybees hive (15-29 mg/g) [50]. The 
other constituents of propolis are caffeic acid, quercetin, kaempferol, 
galangal and cinnamic acid esters. CAPE is ester derivative of caffeic 
acid which is a cinnamic acid derivative (3,4-dihydroxycinnamic acid) 
present in abundance in coffee drinks, berries, apples and cider [51]. 
Several other derivatives (alkyl esters) of caffeic acid are synthesized 
from phenyl propanoid scaffold having significant antioxidant and 
anti-inflammatory activities. Although CAPE is converted to caffeic 
acid after ~ 6 h in vivo, however, it provides better pharmacokinetic 
parameters (e.g. clearance 42-172 ml/min/kg, elimination t1/2 21.24–
26.71 min, i.v.) highly desired for optimum therapeutic effects [52]. 
The high lipophilicity of CAPE renders wide distribution (Vd 1555-
5209 ml/kg) in body including the brain [53].

Several pharmacological activities such as antioxidant [54], anti-
inflammatory [55], immuno-modulatory [56] and neuro protection 
[57] by CAPE ensues high utility in many disorders [58,59]. The 
anti-inflammatory activity of CAPE is attributed to inhibition of 
expression and activity of COX-1/2 and suppression of NFκB [60], 
nuclear factor of activated cells (NFAT) and activator protein-1 
(AP-1) transcriptional activity [61]. The pro-survival function of 
CAPE is evident by inhibition of Bak, Bax, p53 MAPK, c-Jun, c-Jun 
N-terminal kinase and Fas ligand, and caspases. Furthermore, 
activation of Bel-2, X-linked inhibitor of apoptosis protein, release of 
cytochrome C, loss of mitochondrial trans membrane potential, and 
decrease in Mcl-1 demonstrate the anti-apoptotic effects of CAPE 
[58]. The immunosuppressant action of CAPE suggests inhibition of 
T-cell activation and release of IL-2 [62]. In a study CAPE attenuated 
the release of TNF-α and IL-1 in LPS stimulated neutrophils [63]. 
The cardio protection, nephron protection, Hepato protection and 
prevention of bone-marrow toxicity from several chemotherapeutic 
toxic agents like cisplatin, bleomycin, tamoxifen, doxorubicin and 
methotrexate in humans and animals show the pro-survival effects 
of CAPE [58]. It is demonstrated that CAPE can directly suppress the 
iNOS gene expression through modulation of NFκB sites in promoter 
region of iNOS gene [64]. The iNOS mediated pathogenic rise in NO 
is detrimental for the neuron survival.

The antioxidant activity of CAPE owing to the catechol ring 
[65] is found better than that of vitamin E [66]. The existing data 
indicates that CAPE reduces lipid peroxidation, and enhances the 
endogenous antioxidant defence (e.g. glutathione, SOD, catalase, 
glutathione peroxidase) against streptozotocin induced diabetes 
[67] and thermal trauma [68]. The antioxidant activity of CAPE 
is attributed to activation of Nrf2/ARE pathway [69] that is a 
downstream target of PI3-kinase-Akt signalling. The inhibition of 
Kelch-like ECH-associated protein 1 (a repressor of Nrf2) by CAPE 
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is another mechanism for activation of Nrf2 signalling [70]. The 
neuroprotective potential of CAPE was evaluated in 3-nitropropionic 
acid (3-NP) induced striatal toxicity in male C57BL/6 mice, a model 
of Huntington's disease. The study depicted direct free radical 
scavenging activity of CAPE, and reduction in neuro degeneration, 
LDH release and microglia activation by CAPE against 3-NP [57]. 
CAPE prevents the mouse HT22 hippocampal neurons from acrolein 
toxicity through reduction in ROS and increase in GSH levels [71]. 
The protection of dopaminergic neurons against LPS/IFN-γ toxicity 
by CAPE is attributed to increase in HO-1 and release of BDNF 
[72]. CAPE has shown substantial neuro protection against other 
neurotoxins like pentylenetetrazole [73] and cigarette smoke and 
mouse model of amyotrophic lateral sclerosis [74].

A recent study demonstrated that CAPE protected the memory 
functions of mice in Aβ1-42 oligomers induced AD model. CAPE (10 
mg/kg) countered the oxidative stress, inflammation and triggered 
activation of Nrf2/HO-1 pathway through GSK-3β modulation in 
hippocampus of Aβ1-42 oligomers treated mice [75]. Protective action 
of CAPE on PC12 cells against dopaminergic neurotoxin MPP+ has 
been observed. CAPE increased the neuritogenesis, synaptogenesis; 
expression of GAP-43, synapsin and synaptophysin in MPP+ treated 
PC12 cells [76]. In an animal model of Parkinson’s disease CAPE 
bestowed considerable neuro protection against MPTP by inhibiting 
the expression of iNOS, caspase-9, and release of cytochrome c 
and Apoptosis Inducing Factor (AIF) from mitochondria [77]. In 
addition it has been stressed that CAPE can prevent mitochondrial 
dysfunction which is a key feature in AD pathology [78].

An in vitro study demonstrated CAPE induced decrease in 
BACE-1 activity and increase in α-secretase activity in hippocampal 
cell culture [71]. Amelioration of insulin induced glucose metabolism 
and decrease in expression of pro-apoptotic factors by CAPE have 
been associated with PI3-kinase-Akt pathway [79,80]. CAPE restores 
the TBI triggered disruption of neurovascular integrity and relieves 
the cerebral vasospasm which implies involvement of eNOS-NO 
signalling through PI3-kinase-Akt pathway [81,82].
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