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Editorial
During the 80s, the interest concerned to prostaglandins and their role in the inhibition 

of hematopoietic progenitors proliferation. Indeed, various studies showed experimental data 
obtained on models of mouse reporting the relation between the inhibition of prostaglandin 
production and hematopoiesis. While the type E of prostaglandins acts as a negative feedback of 
myelopoiesis, the inhibition of the cyclooxygenase (COX), responsible for their production, leads a 
return in a positive control. The agents inhibiting the COX, non-steroidal anti-inflammatory drugs 
(NSAIDs), can activate hematopoiesis and have a protective or curative effect in myelosuppression 
states. The efficiency of the therapeutic use of NSAIDs in these situations is meaning in particular 
under the COX-2 selective inhibition, when the unwanted side effects of the COX-1 inhibition as the 
gastroenteritis – intestinal hurts are absent [1].

COX-2 is expressed in numerous types of hematological tumors and it’s over expression is often 
an indicator of bad forecast. Chronic myeloid leukemia (CML), Hodgkin lymphoma and non-
Hodgkin lymphoma, as well as the multiple myeloma present all an over expression of COX-2 [2].

The researchers emitted the hypothesis that COX-2 improves the tumorigenesis because its 
expression favorites the apoptosis resistance [3]. Secchiero et al. [4] showed that the level of the 
mRNA coding for the COX-2 but also the protein COX-2 were positively regulated with regard to 
healthy subjects (normal lymphocytes B).

The authors observed that the primary cells of CML express the protein COX-2 at levels raised 
compared the healthy cells, but also in bone marrow of patients affected) by CML, this expression 
being correlated to a decrease of the survival of patients [5]. Besides, the authors demonstrated 
that 70% of cells stemming from patients affected by the Hodgkin lymphoma presented an over 
expression of COX-2 [6].

Besides, the COX-2 favors the wickedness, angiogenesis, metastasis, the influence on the 
function of regulating T cells, and also affects the activity of cells having a cytotoxic function, in 
summary all which regulates the capacity of cancer cells to survive. The high rate of the expression 
of COX-2 is often correlated in a decrease of the survival of the patients affected by hematological 
malignancies.

The deregulations of apoptosis machinery lead the resistance of apoptosis. This resistance is 
characterized by an inhibition of the release of the cellular death or a delay in the progress of this 
one in answer to anapoptotic stimulus. Apoptosis resistance plays an important role in the tumoral 
development. Indeed, an uncontrolled cellular proliferation combined with apoptosis resistance are 
necessary and sufficient at the same time for a tumoral progress towards a malignant [7,8].

Although there are several mechanisms by which cells escape of apoptosis, the majority of these 
lead to an incapacity for the cell to activate the apoptosis intrinsic pathway. This pathway is regulated 
by the ratio between the anti- and pro-apoptotic members of the Bcl-2 family. This ratio establishes 
the threshold of activation of the caspases which are involved in the apoptotic process [9].

Several studies were interested in the implication of the COX-2/PGE2 (prostaglandin E2) 
pathway in the apoptosis resistance. The first indication concerning the role of COX-2 in apoptosis 
resistance could play come from a study to the rat [3]. A transfection of the gene of the COX-
2 in intestinal epithelial cells of rat leads an over expression of the anti-apoptotic Bcl-2 protein 
correlated in apoptosis resistance. A later study allowed to describe a possible mechanism involved 
in this resistance. So, the activation of Ras-MAPK/ERK pathway by the COX-2/PGE2 pathway could 
increase the expression of Bcl-2 and lead a resistance of apoptosis [10]. Furthermore, in vitro works 
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also allowed studying the role of COX-2 in apoptosis resistance. 
It was shown that the COX-2 over expression in colorectal cancer 
cellsHCT-15 decreased their sensibility in apoptosis [11]. Another 
study also showed that on the human cancer cell line HCT-116, 
initially COX-2 deficient, a transfection with the gene COX-2 made it 
more resistant to apoptosis [12].

It is known that the activation of PI3K/Akt pathway by PGE2 
favorites the survival of mouse intestinal adenomas [13]. Recently, 
several works indicate that the COX-2/PGE2 pathway can modify 
the thresholds of release of apoptosis by activating a number of 
signaling pathways. Indeed, it was described that PGE2 was capable of 
activating cellular survival pathways, such as PI3K/Akt, MAPK/ERK, 
AMPc/PKA and EGFR pathway [14-19].

In spite of numerous studies concerning the COX-2/PGE2 
pathway in the mechanism of apoptosis resistance, the involved 
cellular signaling pathways are not still totally clarified and there 
are disparities concerning the role of the PGE2 in this mechanism. 
Certain studies showed an implication of PGE2 in the activation of 
anti-apoptotic pathways [14-19]. In other studies, it was noticed that 
only a deregulation of the expression of COX-2 protein independently 
of its activity (PGE2 production) was involved in a mechanism of 
apoptosis resistance [11,20,21].
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