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Introduction
MERGEFORMAT Sickle Cell Disease (SCD) is one of the most common severe monogenic 

disorders worldwide with an average of 300,000 children born annually with sickle syndromes, 
the majority in Africa [1,2]. SCD was initially endemic in areas of malaria disease (Africa, 
Southern India, Mediterranean countries, Southern Asia), but various waves of migration brought 
populations from areas of high prevalence of the HbS gene in the Americas and Europe (Figure 1). 
Moreover, the recent migration movements of the past decade have further increased the frequency 
of SCD in areas where it was generally uncommon. In Europe SCD has become the paradigm of 
immigration hematology [3] and is now the most prevalent genetic disease in France [4] and the 
United Kingdom [5]; its frequency is steadily rising in many other countries of northern, central and 
southern Europe [6-10] posing a challenge to health systems. In addition, awareness regarding SCD 
is increasing in India [11] and in many African countries [12]. Although in low-resource settings 
a great effort in terms of funding, care and research, is still mainly destined to infectious diseases, 
the burden SCD poses on mortality and health systems in Africa is finally starting to be recognized 
[13-16]. Several African countries have developed dedicated services for children with SCD [17-20], 
including newborn screening [21-26]. Patients with SCD in many centers are being evaluated in 
a standardized comprehensive manner both in prospective observational cohorts [17,19,27] and 
randomized clinical trials [28,29]. Although some experiences are still conceived as pilot programs 
and have yet to be scaled up at a national level, their results are promising and demonstrate and 
increased commitment to tackle SCD at a global level.

SCD can be defined a globalized disease and its presence in so ethnically diverse populations, 
living in extremely variable environments and in very different socio-cultural societies, is a factor 
that must be taken into consideration when addressing its management. In fact, although SCD is 
a monogenic disorder, its phenotype can be highly variable, not only among individuals, but also 
among ethnic groups and populations [30,31].

In this chapter we will review the cerebrovascular complications of SCD, focusing mainly on 
cognition, from a global perspective. Further, recent achievements in understanding the causes of 
altered cognition in SCD will be highlighted as well as future clinical and research directions.

Cerebrovascular Complications of Sickle Cell Disease: Stroke 
and Silent Infarcts

In the most severe forms of SCD, the homozygous SS and the double etherozygous Sβ°, the 
brain is frequently affected (Figure 2). Overt ischemic stroke occurs in 11% of untreated children as 
a result from stenosis or occlusion in the large arteries of the Circle of Willis [32,33]. Cerebral silent 
infarcts (CSI), affecting 40% of children by the age of 14, are caused by small vessel disease [34,35] 
although recent evidence suggests that also a combination of chronic hypoperfusion or hypoxic 
events, favored by an underlying artheropathy of the large vessels can lead to CSI [36]. In the past 
15 years improvements have been made in the management of stroke and CSI [36,37]. In fact, 
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algorithms for screening, prevention and management of stroke and 
CSI based on neuroimaging techniques such as Transcranial Doppler 
(TCD) and Magnetic Resonance Imaging/Angiography (MRI/MRA) 
are routinely used in clinical practice [37-40].

TCD screening is recommended starting at age 2 years in children 
with HbSS and HbSβ° and those identified at risk of stroke are offered 
chronic transfusion as stroke prevention [37]. Recently, a randomized 
study demonstrated that after one year of chronic transfusion, 
hydroxicarbamide (HU) can be safely offered to children with normal 
neuroimaging under strict surveillance [41]. While TCD allows to 
identify patients at risk of stroke and initiate appropriate treatment, it 
is not useful to screen for the other cerebrovascular complications of 
SCD such us CSI. Moreover, its usefulness in identifying risk of stroke 
in other genotypes of SCD such as HbSC and HbSβ+, in which stroke 
is less common, has yet to be evaluated.

Screening with MRI/MRA, although unable to indentify children 
at risk of developing CSI, is strongly recommended in many centers 
starting at age 5 years, when sedation is no longer necessary [36,38,42], 
to ensure diagnosis at young age and promptly start therapeutic or 
educational measures. In case of abnormal TCD, developmental 
delay or cognitive impairment or any other clinical reason, MRI is 
indicated even before 5 years of age. Both chronic transfusions and 
HU have been shown to stabilize CSI [36,37,43], but there is no 
general agreement on prevention strategies.

Stroke and silent infarcts: open issues at a global level
In spite of extensive research performed in the United States and 

Europe on the management of stroke and CSI in children with SCD 
in the past decades, the delivery of routine TCD screening to children 
with SCD has been quite low. Primary stroke prevention through 
TCD is recommended in all national and international guidelines, but 
less than 50% of children in the USA [44] and the United Kingdom 
benefit from this technique [45]. Data regarding the coverage of 
TCD screening are not available for other countries of Europe, South 
America or the Middle East at national level, but only for single center 
experiences [36,39,42,46,47] and this is a gap that should be filled.

TCD data are not yet available from many areas of the world like 
India, Northern and Sub-Saharian Africa. Nevertheless, personnel 
training on the correct protocol of TCD screening for SCD has been 
performed in Africa and promising pilot studies are being conducted 
in Nigeria [48-50]. These studies demonstrate the feasibility of 
primary and secondary prevention programs in low-resource settings 
with huge numbers of patients. They also allow to explore the efficacy 
of alternative protocols compared to those in use in the USA and 
Europe and to demonstrate the benefit of HU in reducing TCD 
velocities [51].

A challenge that a global approach to SCD can address is the 
reported variability of stroke and cerebrovascular complications in 
populations of different ethnic backgrounds. Stroke and CSI seem 
to occur with different frequency across populations, although data 
are still poor and warrant further investigation [52-55]. Moreover, 
biological factors such as G6PD deficiency and alfa thalassemia co-
inheritance as well as coagulation activation and Single Nucleotide 
Polymorphisms (SNPSs) do not seem to have the same role on the 
genesis of cerebrovascular complications in different populations 
[56-61].

In conclusion, more TCD and MRI/MRA data from SCD 
populations across the world could aid in designing wide population 

studies to explore genetic and biologic modifying factors of 
cerebrovascular disease as currently performed in other pathologic 
conditions [62]. Coordinating cerebrovascular studies across 
countries and continents can be challenging [50,63-66] but is now 
warranted to improve patients access to recommended screening 
tools and better target treatment interventions according to biological 
disease modifying factors, which may vary across ethnicities.

Cognition in Sickle Cell Disease
Impaired cognition and poor academic performances are a 

major morbidity among children and adults with SCD [33]. Children 
experience general cognitive deficits as assessed by Full Scale IQ 
(FSIQ), as well as deficiencies in specific domains of cognition (i.e 
memory, attention...) [67].

Impairment of cognitive function is reasonable in children who 
experienced an overt stroke or present CSIs, even at young age, due 
to the anatomical damage to the brain [67-70]. A recent meta-analysis 
[71] including most of the published studies exploring cognition 
described a drop of FSIQ from controls to, patients without CSI, to 
patients with CSI to patients with stroke (96.68 vs. 89.18 vs. 83.81 vs. 
71.08 respectively). Nevertheless, there was a mean difference of -6.90 
IQ points in patients without cerebrovascular damage compared to 
controls.

The pathophysiology of cognitive impairment in children with 
SCD and normal neuroimaging studies is less clear. In fact, patients 
with normal TCD and normal MRI/MRA still display cognitive 
deficits not only on FSIQ, but also in attention, memory and 
executive functions [32,67,72,73], with profound adverse impact on 
health, education and quality of life. Recent evidence suggests that 
both biological and clinical parameters as well as socio-economical 
and environmental factors can be involved [71].

In fact, anemia severity or hematocrit, oxygen saturation, sleep 
disturbances, nutritional deficiencies (biological factors) and parent's 
level of education, household income, immigration status, languages 
spoken at home, pollution (socio-economical and environmental 
factors) are all considered to have an effect on cognition in SCD [72-
76].

Cognition: open issues at a global level
The majority of studies exploring cognition and reported in the 

above paragraph have been conducted in the USA, some in Europe 
(UK, France, The Netherlands, Italy) and very few in the Middle East 
or Africa (Kuwait, Cameroon, Nigeria) [77-80]. More has to be done 
in order to define the role of socio-economic and environmental 
factors. The latter may be extremely different among populations, 
similarly to the genetic determinants of phenotype variability and 
therefore the need to target each one of them in a comprehensive 
therapeutic approach could vary according to the population or the 
country. Studies in Africa, South America and India are warranted.

Moreover the more appropriate battery of intellectual function 
test has not yet been defined, and in many centers cognitive evaluation 
and educational support are not included as part of comprehensive 
care, although recommended. Migration movements and multiple 
languages make even culture free tests difficult and time consuming 
to administrate, with lack of standardized values for comparison. This 
could be overcome by technologies that can simplify and standardize 
cognitive evaluation [81].
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Recent Highlights and Future Directions
The above reported difficulties highlight the need for biomarkers 

that bridge the gap between early pathophysiological alterations 
occurring in the brain (micro-vaso-occlusion, small vessel 
vasculopathy, endothelial dysfunction-intimal proliferation, vascular 
tone dysregulation), and clinically evident impaired cognition, 
which seems to be a later manifestation of cerebral damage. Some 
cerebral abnormalities might be undetectable with conventional 
imaging studies and the development of more sophisticated imaging 
techniques [82] might reveal that MRIs which are considered 
normal with the currently available equipments, present subtle brain 
parenchymal lesions. In addition, patients with SCD seem to present 
functional brain abnormalities not evaluable by conventional studies. 
Functional imaging studies, whether EEG based or MRI based, have 
recently been applied in SCD and have shown promising insights 
in exploring clinical manifestations and cognitive abnormalities in 
this disease [83,84]. Cognitive evoked potentials and EEG analyses 
revealed abnormal neural networks even without severe anemia, 
pain or silent infarcts. Altered brain connectivity detected by 
functional magnetic resonance imaging (fMRI) is associated with 
increased pain. Functional technologies are promising approaches to 
explore biological basis of cognition and to be used in prospective 
interventional trials.

Rehabilitation cognitive programs and tutoring, involving the 
private and volunteer sectors are useful to improve cognition and 
academic performances in children with SCD [85].
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