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Mini Review
Researchers worldwide concede that improvement in dental materials’ properties is one of the 

prominent unrelenting problems challenging technological evolution. Clinicians and scientists at 
various dental fields are longing for new materials with enhanced properties and uncomplicated 
procedures to apply in this manner enduring competitive advantage. Physiochemical, mechanical 
and structural properties’ execution of materials are critical in the progress of applied science. Due 
to some physiochemical and mechanical behaviors of ceramics in addition to nonmaterial's such as 
titanium carbide, carbon nanotubes, and boron nitrides, they have a wide-range of implementation 
in many fields.

The field of dentistry concerned with root canal treatment, named “Endodontics”, is continually 
altering due to the launching of new techniques and technological progress. Development in 
endodontic material science, like the recently introduced bioceramic root canal sealers, significantly 
broadened this field and made a shift in endodontics. 

The expression ‘bioceramics’ refers to biocompatible ceramic materials that are particularly 
studied for the application in medical and dental fields. In the endodontic field, active and re-
absorbable bioceramics are applied [1]. They are comprised of alumina, zirconia, bioactive glass, 
glass ceramics, composites, hydroxyapatite, restorable calcium phosphates and radiotherapy glasses 
[2,3]. One kind of material amongst them is calcium phosphate–based used for filling bone defects. 
Other material like mineral trioxide aggregate (calcium silicate-based) was introduced for closure of 
open apices of root canals and repair of perforations [4,5].

Many endodontic sealers that are based on calcium silicate have been introduced. The first 
sealer was iRoot SP that exhibited biocompatibility and hydrophilicity [6]. EndoSequence BC, MTA 
Fillapex, Bioroot RCS and Endorsees MTA followed and were investigated in several studies that 
showed that BioRoot RCS was more biocompatible than iRoot SP, MTA Fillapex, and Endoseal 
MTA [7-10], and showed better antibacterial effects [8,11,12]. It proved prolonged ability to release 
calcium ions and alkalization [13]. Yet, it exhibited higher solubility and water sorption [14]. BioRoot 
RCS is one of the latest root canal sealers based on tricalcium silicate material that gain from both 
active bio-silicate technology and biodentin [15,16]. One of its main paramount properties is its 
adhesion to the root canal walls and its bioactivity that may initiate hard tissue deposition [17,18].

The privilege of bioceramic sealers made them an integral component of the endodontic 
obturation system, and has advanced into the field of surgical endodontics. This is due to their 
dimensional stability because they do not shrink upon setting and thus, remain non-restorable 
inside the root canal [19]. In addition to that, the formation of calcium hydroxide as a by-product of 
the setting reaction produces a high pH that initiates an anti-bacterial action during its setting time. 
This is an important physical property for an endodontic sealer [20] with excellent antimicrobial 
bioactivity, capable to induce mineralization of periapical tissues [21]. Another property is their 
ability to set in a humid environment, such as dentin, which is made of nearly 20% of water [5]. 
The main bioceramic components of BioRoot RCS are tricalcium silicate and zirconium oxide 
[22]. Despite their purported advantages, bioceramic-containing root canal sealers have important 
drawbacks such as the difficulty of insertion into root canals because of their texture, extended 
setting time, and high solubility. Also, scarce information exists concerning the efficiency of their 
mechanical properties especially fracture resistance of endodontically treated teeth [23].

Root canal walls may lose strength due to root canal cleaning and shaping, over-instrumentation, 
retreatment, root resorption or dehydration. As a consequence, the resistance of root canals to 
functional loads may decrease and the roots become more vulnerable to vertical root fracture which 

Bioceramic –Based Nanocomposite Root Canal Sealers 
Reinforced with Different Nanomaterials

OPEN ACCESS

 *Correspondence:
Inaam Baghdadi, Department of 

Endodontics, Beirut Arab University, 
Lebanon, Tel: +961 3 727793;
E-mail: innb2000@gmail.com
Received Date: 08 Sep 2021
Accepted Date: 01 Oct 2021
Published Date: 05 Oct 2021

Citation: 
Baghdadi I. Bioceramic –Based 

Nanocomposite Root Canal 
Sealers Reinforced with Different 

Nanomaterials. Ann Short Reports. 
2021; 4: 1071.

Copyright © 2021 Inaam Baghdadi. 
This is an open access article 
distributed under the Creative 

Commons Attribution License, which 
permits unrestricted use, distribution, 

and reproduction in any medium, 
provided the original work is properly 

cited.

Mini Review
Published: 05 Oct, 2021

Inaam Baghdadi*

Department of Endodontics, Beirut Arab University, Lebanon



Inaam Baghdadi Annals of Short Reports - Dentistry

Remedy Publications LLC. 2021 | Volume 4 | Article 10712

may mostly lead to tooth extraction. Thus, root canal filling materials 
that have the ability to reinforce the tooth would be a great advantage 
to protect them against vertical fracture.

In any case there have been minor investigations on the properties 
of bioceramic root canal sealers reinforced with multi-walled 
carbon nanotubes, or titanium carbide or boron nitride composites. 
Furthermore, improvement in the development of bioceramic 
composites with the aid of sintering techniques might contribute to 
the properties of the developed composites to be applied in special 
conditions. Investigating the likelihood of strengthening a bioceramic 
root canal sealer reinforced by multi-walled carbon nanotubes, 
titanium carbides, and boron nitrides can considerably upgrade its 
properties. These nonmaterial's have mechanical properties that 
would assist in forming a dense microstructure and solid adhesion 
with the bioceramic matrix. Recent investigations focused at 
understanding the influence of adding these different nonmaterial's 
on the physiochemical properties, microstructure, and compressive 
strength of bioceramic root canal sealer.

Few of the materials that have been attempted for calcium 
silicate-based bioceramics have sufficient mechanical properties 
and favorable biocompatibility. Nanomaterials could be used as 
reinforcement nonmaterial's for enhancing the physiochemical and 
mechanical properties of bioceramic based root canal sealers.

The recent development of nanotechnology has opened up novel 
fundamentals and applied frontiers in material science [24,25]. 
The emergence of this technology may improve the properties of 
existing materials. Some nonmaterials have been used to improve 
the mechanical properties of bioceramics. Carbon nanotubes, 
titanium carbides, and boron nitrides nanoparticles are excellent 
reinforcement nonmaterial's for enhancing mechanical, electrical, 
and thermal properties of bioceramics.

The properties of ceramic materials and their structural strength 
may be improved by carbon nanotubes reinforcement [26,27]. The 
unique mechanical properties and bioactivity of Multi-Walled Carbon 
Nanotubes (MWCNTs) renders them as favorable reinforcement 
nonmaterial's used in manufacturing bioceramic nano-composite 
[28-32]. Similarly, Titanium Carbide (TC) is hard refractory ceramic 
material that has many appealing properties such as low density, 
relatively high thermal and electrical conductivity, and compressive 
strength [33,34]. Studies have shown that the cement paste mixtures 
with TC nanoparticles were characterized with high strength due to 
their ability to fill the pores in cement pastes [35-37]. Likewise, Boron 
Nitride Nanotubes (BN) are gaining more attentiveness as novel 
nonmaterial's due to their high oxidative properties, mechanical and 
chemical resistance [38]. All of the above may have the potential as 
reinforcement nonmaterial's in an attempt to improve the properties 
of bioceramics.

Rafiee et al. [39], and Walker et al. [40], showed that reinforcing 
a ceramic-matrix with graphene, can permit excellent toughness and 
can hinder crack propagation [39,40]. In addition to that, and due to 
the brittleness of bioceramics, new evolutions in the field of nano-
composites has led to the use of nanoparticles as reinforcements 
to refine the mechanical features of ceramics [41]. Presently, the 
actual usages of nonmaterials for a variety of dental applications 
have advanced [24]. The superb properties of multi-walled carbon 
nanotubes, titanium carbide, and boron nitride have encouraged 
the synthesis of new composites with favorable versatile properties 
[42,43].

Furthermore, the brittle nature of bioceramic materials, the 
long setting time and high solubility of bioceramic root canal 
sealers, the determination of the optimal sintering temperature and 
stability in nitrogen atmosphere for root canal sealers reinforced 
with nonmaterials, present a technical problem from proceeding on 
these identified technologies. The process of fabrication of composite 
ceramics must be done under high sintering temperature to enhance 
densification. There are scarce studies that explore the aid of pressure 
less sintering in nitrogen atmosphere on calcium silicate nanoparticle-
incorporated sealers. The appropriate sintering atmosphere for these 
composites presents a dilemma as to avoid their oxidation at high 
temperatures and enable the composite to retain the nonmaterials.

It will be very interesting to conduct future in-vitro studies in 
endodontically treated teeth to explore the different properties of 
bioceramic - based nano-composite root canal sealers reinforced with 
different nonmaterial's.
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