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Introduction
Sickle Cell Disease (SCD) is a severe genetic disorder that affects populations around the world 

and is characterized by the presence of hemoglobin S (HbS) inside the erythrocyte. The condition 
is caused by a point mutation GAG>GTG on the sixth position of the β-globin gene, resulting 
in the replacement of glutamic acid by valine in the polypeptide beta chain (βs) [1]. A variation 
GAG>AAG in the same locus induces a change from glutamic acid to lysine that characterizes the 
βc chain. Homozygosis for βs results in a disorder known as sickle cell anemia (HbSS); individual’s 
heterozygous βsβc present hemoglobin SC disease (HbSC) [2,3].

HbSS patients present atypical red blood cells (RBC) with classic sickle-shape that do not 
circulate properly in the microcirculation, causing blood flow obstruction, hemolysis and vaso-
occlusive crisis (VOC) [4]. These events are responsible for the main clinical manifestations of the 
disease, as well as for significant morbidity and reduction of life expectancy [5]. HbSC patients 
present target-shape RBC and manifest similar clinical features of those with HbSS, however in a 
lower frequency and intensity [6,7].

Hematologic and biochemical parameters, as well as clinical manifestation of both HbSS and 
HbSC diseases, are influenced by genetic factors such as haplotypes of the β-globin gene cluster 
and the α-thalassemia 3.7kb deletion [8-11]. Different haplotypes linked to the βs-globin gene have 
been described in SCD patients from Senegal (Sen), Benin (Ben), Central African Republic (CAR), 
Cameroon (Cam) and Arab-Indian (Arab) and have been named according to the geographical 
region or ethnic group in which they have been originally identified. Among HbSC patients, 
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Abstract
Aim: We describe βS and βC haplotypes and α-thalassemia 3.7kb genotypes from sickle cell disease 
patients Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas - Manaus, AM.

Methods: Our survey included 139 HbSS and 11 HbSC patients. Molecular genotypes have been 
identified by PCR-RFLP and α-thalassemia 3.7kb deletion by ASO-PCR. Male/female distribution 
was 42.3%/57.7%.

Results: The average age at enrolment was 19.1 years for HBSS and 25.85 years for HbSC. Average 
fetal hemoglobin was 11.27% for HbSS and 7.86% for HbSC. Anemia in HbSS patients was more 
severe and hemolysis twice as stronger as compared with HbSC individuals. The frequency 
distribution of the most common β-globin haplotypes among HbSS patients was 52.5% CAR/CAR, 
23.7% CAR/Ben and 18% Ben/Ben. For the HbSC group the haplotype distribution was 36.3% CAR/
CI, 27.3% Benin/CI, 18.2% CAR/CII, 9.1% CAR/CIII and 9.1% Benin/CII. 13.7% and 2.8% of the 
HbSS patients were heterozygous and homozygous for the α-thalassemia 3.7kb deletion, respectively. 
No HbSC patients presented the deletion.

Conclusion: Here we present the distribution of haplotypes βS and βC and α-thalassemia deletion 
3.7kb in a population sample with SCD from the Occidental Brazilian Amazon. Results have been 
analyzed in the context of hematological and biochemical profiles.
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haplotype groups have been characterized as Sen/I, Sen/II, Sen/III, 
Ben/I, Ben/II, Ben/III, e Car/I, Car/II e Car/III [8,9,12].

The presence of α-thalassemia in patients with SCD is associated 
to milder phenotypes, as the polymerization potential of HbS and 
HbC decreases, leading to the presence of fewer dense cells with little 
deforming and increased hematocrit, reducing the vaso-occlusive 
events and preserving spleen function [6,9,13].

Although molecular characterization surveys of populations 
affected by SCD has been carried out in several countries including 
Brazil, results have been often conflicting [14-19]. In addition, for 
some particularly interesting regions of Brazil, such as the occidental 

Amazon, this molecular profile is still widely unknown. Finally, few 
studies have compared biochemical and hematological parameters 
across SCD individuals of different β-globin and α-thalassemia 
molecular backgrounds. Here we describe the β-globin and 
α-thalassemia genetic profile of a population sample of individuals 
affected by sickle cell and hemoglobin SC disease from the Brazilian 
Amazon, presented and discussed in the context of a comprehensive 
hematological and biochemical profile [20-23].

Materials and Methods
The studied population sample is composed by 150 SCD patients 

attending the hematological hospital of the Fundação Hospitalar de 

Hematological and Biochemical Parameters Hb SS
DP

HB SC
DP p-value

HbF (%) 9.92 ± 6.39 3.42 ± 2.74 <0.001

RBCs (106/mm³) 2.90 ± 0.69 4.13 ± 0.62 <0.001

Hemoglobin (g/dl) 8.52 ± 1.49 11.01 ± 1.93 <0.001

Hematocrit (%) 25.62 ± 4.58 31.27 ± 4.83 <0.001

MCV (fL) 89.59 ± 11.46 73.94 ± 11.43 <0.001

MCH (pg) 29.97 ± 4.30 26.60 ± 4.06 0.002

MCHC (g/dl) 33.36 ± 1.94 35.15 ± 1.55 <0.001

Reticulocytes (%) 3.26 ± 2.69 3.02 ± 1.90 0.892

RDW (%) 19.82 ± 2.55 17.20 ± 1.97 <0.001

Leukocyte count (x109/L) 11964.99 ± 4318.96 8997.77 ± 2562.61 0.005

Platelet Coun (x109/L) 454.56 ± 179.14 322.00 ± 126.46 0.002

Urea (mg/dL) 20.55 ± 9.05 22.92 ± 7.28 0.366

Creatinine (mg/dL) 0.61 ± 0.17 0.80 ± 0.17 <0.001

GGT (U/L) 31.75 ± 18.83 31.22 ± 18.43 0.937

Direct bilirubin (mg/dL) 0.90 ± 0.44 0.74 ± 0.26 0.238

Indirect bilirubin (mg/dL) 2.27 ± 1.57 1.17 ± 0.84 0.030

Glucose (mg/dl) 84.47 ± 10.02 83.92 ± 7.05 0.835
Triglycerides  (mg/dL)

HDL cholesterol (mg/dL)
88.30 ± 42.25
41.20 ± 13.00

68.87 ± 23.77
52.85 ± 10.44

0.226
0.038

LDH (U/L) 521.17 ± 205.79 289.55 ± 129.18 0.001

Iron (mcg/dL) 97.65 ± 49.70 69.55 ± 19.99 0.098

Ferritin (ng/mL) 925.13 ± 1415.76 241.95 ± 227.56 0.098

Table 1: Hematologic and biochemical parameters of patients with das hemoglobin SS and SC from Manaus, Amazon, Brazil.

HbF: Fetal Hemoglobin; MCV: Mean Corpuscular Volume; MCH: Mean Corpuscular Hemoglobin; MCHC: Mean Corpuscular Hemoglobin Concentration; RDW: Red 
Blood Cell Distribution Width; GGT: Gamma-glutamyl Transferase; LDH - Lactate Dehydrogenase Activity

Hematological Parameters CAR/CAR
(N=73; 52.5%)

CAR/Benin
(N = 33; 23.7%)

CAR/Senegal
(N = 4; 2.9%)

CAR/
Cameroon

(N = 2; 1.4%)

Benin/
Benin

(N = 25; 18%)

Benin/
Senegal

(N = 2; 1.4%)
p-value

RBCs  (106/mm³) 2.76 ± 0.52 2.71 ± 0.63 3.47 ± 0.75 3.12 ± 0.13 3.04 ± 0.78 2.88 ± 0.28 0.027

Hemoglobin (g/dl) 8.18 ± 1.23 8.37 ± 1.38 9.52 ± 1.43 9.20 ± 1.31 8.60 ± 0.99 8.65 ± 2.19 0.127

Hematocrit (%) 24.56 ± 3.73 25.16 ± 4.47 28.84 ± 3.65 27.26 ± 3.81 26.10 ± 4.02 29.70 ± 3.56 0.046

MCV (fL) 90.0 ± 8.88 94.0 ± 13.45 85.4 ± 15.94 87.10 ± 9.90 87.80 ± 12.56 84.4 ± 20.36 0.196

MCH (pg) 30.07 ± 3.27 31.57 ± 5.10 28.06 ± 5.38 29.43 ± 4.82 29.20 ± 4.82 28.70 ± 9.19 0.166

Reticulocytes (%) 3.37 ± 4.41 3.76 ± 7.09 2.86 ± 3.62 1.3 ± 2.90 3.52 ± 4.09 --- 0.845

RDW (%) 20.12 ± 2.21 20.03 ± 2.64 20.70 ± 2.78 16.43 ± 2.10 19.83 ± 2.38 19.25 ± 1.76 0.171

Leukocytes (x109/L) 12.01 ± 3.35 13.69 ± 5.08 7.37 ± 5.97 12.65 ± 6.01 10.35 ± 3.56 10.79 ± 3.68 0.002

HbF (%) 5.92 ± 3.05 11.14 ± 3.92 19.44 ± 9.63 17.23 ± 2.87 20.97 ± 2.75 17.80 ± 1.83 <0.001

Platelet  (x109/L) 496 ± 176 455 ± 148 315 ± 256 420 ± 112 397 ± 194 470 ± 260 0.048

Table 2: Hematologic Parameters between Haplotypes linked to globin βS gene of patients with sickle cell disease from Manaus, Amazon, Brazil.

RBCs: Red Blood Cell; MCV: Mean Corpuscular Volume; MCH: Mean Corpuscular Hemoglobin; RDW: Red Blood Cell Distribution width; HbF: Fetal Hemoglobin
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Hematologia e Hemoterapia do Amazonas (FHEMOAM) located in 
the city of Manaus, capital of the state of Amazonas, Brazil. Of these, 
139 were homozygotes HbSS and 11 were double heterozygous HbSC. 
Gender distribution was 87 (58%) females and 63 (42%) males, with 
age at enrolment between 4 months and 57 years old. Average age at 
diagnosis was 6.5 (± 11.23) years for HbSS and 10 (± 12.52) years for 
HbSC individuals. Hemoglobin profiles have been confirmed by high-
performance liquid chromatography (HPLC) (Bio-Rad, Hercules, 
CA, USA). All participants or guardians (in the case of children under 
18 years of age) have signed the written consent form and the study 
has been approved by the Research Ethics Committee (CEP) of the 
Federal University of Amazonas (UFAM) under the CAAE number 
37941514.4.0000.5020.

Peripheral blood samples for the hematological and biochemical 
analysis were obtained during a routine appointment for follow-up. 
The hematological analysis have been performed using the automated 
hematologic analyzer BC-5800 (Mindray, Shenzhe, China); data 
have been obtained for the overall count of red blood cells (RBCs), 
concentration of hemoglobin, hematocrit, mean corpuscular volume 
(MCV), mean corpuscular hemoglobin (MCH), mean corpuscular 
hemoglobin concentration (MCHC), red blood cell distribution 
width (RDW), total and differential leukocyte count and platelet 
count. Fetal hemoglobin (HbF) detection was performed using the 
alkaline resistance biochemical test [24]. Biochemical parameters 
were measured as implemented in the automated A25 platform 
(BioSystems SA, Barcelona, Spain) and included serum concentration 
of urea, creatinine, direct and indirect bilirubin, glucose, triglycerides, 
iron and ferritin, as well as gamma-glutamyl transferase (GGT) and 
lactate dehydrogenase activity (LDH).

Genomic DNA was obtained from peripheral blood using Hi Yield 
Genomic DNA extraction kit (BioAmerica Inc., USA). NanoDrop ND-
1000 (ISOGEN LIFE SCIENCE, Netherlands) was used to measure 
DNA concentration. Seven specific loci of the β-globin gene located 
in the short arm of chromosome 11 were amplified and genotyped 

by PCR-RFLP, as described previously [25]. In brief, the amplified 
fragments were digested by the following restriction enzymes: Xmn 
I (position 5' of the γG), Hinc II (pseudogene ψβ), Hinf I and Hpa I 
(of regions 5' and 3' of the β-gene, respectively). After digestion, DNA 
fragments were separated by electrophoresis in agarose gel in 1% 
under a constant 80 volts for 45 min and visualized under ultraviolet 
light.

Genotyping of the α-thalassemia 3.7kb deletion was performed by 
ASO-PCR as described by Baysal and Huisman, using the proposed 
nomenclature for normal (A+C) or mutated (A+B) genotypic 
profiles. The PCR products were submitted to electrophoresis (Bio-
Rad, EUA) in agarose gel in 1% under a constant 80 volts for 45 min 
and visualized under ultraviolet light. Patients were distributed into 
three groups: Normal (A+C), heterozygous (A+C) + (A+B) and 
homozygous (A+B) for the deletion [26].

Statistical analyzes were performed using one-way ANOVA and 
Kruskal-Wallis test, as implemented in SPSS, version 22.0. P-values 
<0.05 were considered significant.

Results
Table 1 summarize and compare the hematological and 

biochemical parameters across the two sub-population samples of 
HbSS and HbSC individuals. As expected, statistically significant 
differences were observed for all hematological parameters except 
reticulocyte count. Biochemical parameters creatinine, indirect 
bilirubin, LDH cholesterol and lactate dehydrogenase activity were 
also different across HbSS and HbSC.

The CAR/CAR haplotype was the most frequent in HbSS 
individuals (73, 52.5%), followed by CAR/Benin (33, 23.7%), Benin/
Benin (25, 18%), CAR/Senegal (04, 2.9%), Benin/Senegal (02, 1.4%), 
and CAR/Cameroon (02, 1.4%). Among the HbSC individuals, the 
haplotype distribution was CAR/CI (4, 36.3%), Benin/CI (3, 27.3%), 
CAR/CII (2, 18.2%), CAR/CIII (1, 9.1%), and Benin/CII (1, 9.1%). 

Figure 1: Hematologic Parameters between Haplotypes CAR/CAR, CAR/Ben e Ben/Ben linked to globin βS gene of patients with sickle cell disease from Manaus, 
Amazon, Brazil.
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Due to the small number of HbSC individuals, the distribution of 
hematological and biochemical parameters were analyzed only for 
the HbSS sub-sample (Table 2). When comparing the hematological 
data among the most frequent haplotypes found in our study, only 
the mean corpuscular volume presented statistical significance, with 
the CAR/Ben haplotype presented higher concentration (Figure 1).

A clear, statistically significant difference was observed for 
the HbF distribution, with heterozygous CAR/Ben and CAR/Sen 
presenting average levels of HbF twice and four times as higher that 
CAR/CAR, respectively. In addition, it is interesting to note that the 
leucocyte count is reduced among the four individuals CAR/Senegal. 
Finally, borderline significant differences were detected for RBC 
count, hematocrit and platelet count.

The single biochemical parameter that showed differential 
distribution across the haplotype groups was direct bilirubin that was 
significantly lower (P=0.029) in the CAR/Cameroon group (0.45 ± 
0.07) as compared to CAR/CAR (0,88 ± 0,35), CAR/Ben (0,82 ± 0,38), 
CAR/Sen (0,70 ± 0,21), Ben/Ben (1,17 ± 0,68) and Ben/Sen (0,78 ± 
0,59).

The α-thalassemia 3.7kb deletion was detected at a frequency of 
16.5% in the HbSS group. Of these, 13.7% (19) were heterozygote’s 
(-α/α) and 2.8% (4) homozygote’s (-α/-α). Table 3 summarizes the 
distribution of hematological parameters across two groups of HbSS 
patients presenting (carriers, both homo and heterozygous) or not 
(wild type) the α-thalassemia 3.7kb deletion. None of the patients SC 
presented the α-thalassemia 3.7kb deletion. Statistically significant 
differences between the two groups were observed for RBC count, 
hemoglobin, hematocrit, MCV and MCH.

Discussion
The hematologic correlations between HbSS and HbSC patients 

included in this survey (Table 1) showed a classic profile of laboratory 
findings associated to sickle cell anemia and SC disease: in HbSS 
patients, there is severe normocytic normochromic anemia associated 
with reticulocytosis and leukocytosis; patients HbSC presented much 
milder hematological changes, if any. Of note, LDH activity was 
above the reference interval on both groups and significantly higher 
in HbSS patients, suggesting intense hemolysis. Parameters such as 
MCV, MCH and RDW were higher in patients HbSS, corroborating 
surveys such as performed by Colella e col. in patients with sickle 
cell disease attended in Hematologic and Center of Hematology and 
Hemotherapy (São Paulo, Brazil). In addition, a more pronounced 

leukocytosis among HbSS patients confirms the participation of 
leukocytes in the pathophysiology of the disease, likely due to 
the participation in vaso-occlusive events and not necessarily in 
infectious processes [27].

Several haplotypes distribution analyses of variants linked to the 
globin βS gene have been published using population samples from 
distinct Brazilian regions, with conflicting results. Most of these 
studies show a predominance of CAR as compared to Ben (the two 
most frequent genotypes the same result observed here [16,20,23,28]. 
However, studies performed in population samples from northern 
Brazilian cities of Salvador and Fortaleza resulted in a predominance 
of Ben over CAR [12,19,21,29,30]. Two previous surveys have been 
published using population samples of βS individuals resident in 
the Brazilian Amazonic region. The first was performed using a 
population sample from Belém, capital city of Pará, with results 
somewhat distinct from the present study: three major African 
haplotypes (CAR, Benin and Senegal) have been identified among 
30 sickle cell disease patients, with frequencies as follows: CAR/CAR 
43%, CAR/Benin 47%, Ben/Ben 7% and Sen/Sen 3%. Sixty-seven 
percent of the βS chromosomes analyzed were of the CAR type, 30% 
of the Benin and 3% Senegal [17]. The second focused on African 
descendants with sickle cell disease from three small communities 
from the Brazilian northern states of Pará and Amapá (Curiau, 
Pacoval e Trombetas) and revealed an even more pronounced 
predominance of the CAR genotype (60%) as compared to Sen (30%) 
and Ben (10%) [17,18]. These discrepancies observed across Brazilian 
studies involving population samples from different – and even the 
same – geographic region may be explained by differences in study 
design (mainly sample sizes) and patterns of migration of Africans 
to Brazil during the slavery period, and reinforce the need for local 
surveys.

Results of the comparative analysis of hematological and 
biochemical parameters across haplotype groups reveal an expected 
protection of the Benin and Senegal genotypes as compared to CAR, 
mainly due to a correlation with the levels of HbF, significantly higher 
in Ben/Sen haplotypes (Table 2) [9,31,32]. Interestingly, heterozygous 
CAR/Ben and CAR/Sen present average levels of HbF twice and 
four times as higher that CAR/CAR, respectively, suggesting a 
direct relationship between these variables. Importantly, this must 
be interpreted with caution due to the small number of CAR/Sen 
individuals in our sample.

Coexistence of the α-thalassemia 3.7kb deletion with sickle cell 

Table 3: Analysis of hematologic data in patients of profile SCD carrier and wide type de α-thalassemia 3.7Kb deletion from Manaus, Amazon, Brazil.

Média ± DP

Hematological Parameters Wide Type
N= 116

Carrier
N = 23 p-value

RBC x 106/mm3 2.77 ± 0.67 3.31 ± 0.61 0.001

Hemoglobin g/dl 8.37 ± 1.50 9.16 ± 1.51 0.026

Hematocrit (%) 25.18 ± 4.52 27.90 ± 4.92 0.012

MCV (fL) 90.56 ± 10.42 84.83 ± 13.99 0.012

MCH (pg) 30.61 ± 4.18 28.07 ± 4.38 0.011

MCHC (g/dl) 33.34 ± 2.15 32.99 ± 1.91 0.481

Reticulocytes (%) 3.40 ± 5.44 4.95 ± 4.70 0.387

Leukocytes x 109/L 12098.59 ± 4575.25 10967.72 ± 3435.04 0.274

Platelet x 109/L 474.66 ± 185.41 454.31 ± 201.29 0.643

RBCs: Red Blood Cell; MCV: Mean Corpuscular Volume; MCH: Mean Corpuscular Hemoglobin; MCHC: Mean corpuscular Hemoglobin Concentration
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disease promotes increase of the erythrocyte’s membrane/cytoplasm 
ratio with reduced electrolyte loss and cellular dehydration, reduced 
hemolysis, increase in the concentration of hemoglobin and 
hematocrit, decreased erythrocyte indices (MCV and MCH) and the 
reticulocyte count, as shown in our sample [33,34]. The frequency of 
the 3.7kb deletion of our sample of HbSS individuals does not differ 
from previous Brazilian studies [30,35]. Our results confirm Rumaney 
e col that observed an increase in the amounts of red blood cells and 
hemoglobin and reduced MCV in sickle cell disease patients also 
harboring the α-thalassemia 3.7kb deletion [36]. Pandey e col showed 
an increase in all parameters (erythrocytes, hemoglobin, hematocrit, 
MCV and MCH) in HbSS patients with α-thalassemia [37].

In summary, our results show the distribution of βS and βC 

haplotypes and of α-thalassemia 3.7kb deletion in a large population 
sample of sickle cell disease patients from the Occidental Brazilian 
Amazon and the impact of these genotypes over hematological and 
biochemical parameters, contributing for the expansion of knowledge 
about the molecular characterization of these diseases in Brazilian 
populations.
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