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Editorial
Process control and real time optimization can be powerful system engineering tools to increase 

the productivity in bioprocesses. Recently, advanced process control technology such as model 
predictive control has gained increasingly attention in biotechnology industry. Comparing to the 
conventional control practice such as PID control, advanced process control technique usually 
employs real time optimization to optimize the reactor to increase the productivity and finance 
gain [1]. Considering the successful implantation of model predictive control in the chemical 
and petroleum industries, it holds great potential for increasing the productivity of bioprocesses 
[2]. Comparing with the pharmaceutical industry, the industrial biotechnology field such as 
fermentation for chemicals and small molecules is more adaptive for switching from conventional 
control to advance process control technique, due to federal regulation [3].

There have been several demonstrations of applying advanced process control method 
for microbial fermentation [3-5]. To apply the real time optimization for the reactor, certain 
key information, which is usually referred as ‘state’, needs to be obtained prior to the real-time 
optimization. A few examples of the process states for a fermentation/cell culture process include: 
cell density, concentration of target molecules, concentration of carbon and nitrogen source, 
concentration of toxic byproduct, concentration of metabolic, pH, dissolved oxygen, oxygen 
demand, and carbon dioxide generation. Not all of the above mentioned parameters need to be 
obtained, depending on the process characteristic. Some of the process information such as pH and 
dissolved oxygen can be easily measured online. There are other process parameters such as glucose 
or other intermediate metabolic cannot be measured in a real-time manner. For the process states 
that cannot be measured in a real time manner, technology referred as ‘state estimation’ has been 
developed to estimate the state information.

State estimation is a very important practice for process monitoring and controls [6-8]. Various 
state estimation technologies have been developed in academia and some of them have been applied 
in the industry. Applications of state estimation techniques in industry include performance 
evaluation, fault detection and diagnosis, and advanced process control [9]. One of the current 
challenges for state estimation is the existences of process disturbance, which can significant, reduce 
the estimation accuracy. The process disturbance may come from a variety of sources, such as 
errors from sensor and actuator [10]. The technology for state estimation under different process 
disturbances still needs improvement.

There are basically two types of state estimation techniques: first principle model-based and 
data-based state estimation. First principle model-based state estimation requires development of 
a first principle process model, either stoichiometry model or kinetic model, either continuous or 
discrete [11]. The process model is expected to be able to capture the main process states, preferably 
in a dynamic system. The development of first-principle model can be a challenge for processes with 
high variances and unknown disturbances. An ideal process model should be easy to implement and 
update. Model reduction methods can be applied if a process model is too complicated. There are 
many model-based state estimation techniques available, such as linear and nonlinear Kalman filter 
[12]. Linear and nonlinear Kalman filters were first designed to estimate the process states under 
noises with known covariance. The advantage for first principle model-based state estimation is that 
different disturbances can be simulated and studied individually. This advantage can help with fault 
diagnosis and isolation [13-15]. Linear and nonlinear observers have been one of the options for first 
principle model based state estimation. Recent research has demonstrated the capability for observer 
design and applications. The error or uncertainty from process model can lead to inaccurate state 
estimation. There are research dedicated to study the impact of modeling uncertainty on the state 
estimator [16,17]. Disturbances from multiple sources will be a challenge for some state estimators, 
if the multiple disturbances are not observable from the limited measurements.
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Another method for state estimation is the data-based method, 
which includes statistical data analysis such as principal component 
analysis and artificial intelligence such as machine learning [18]. Due 
to the difficulty of developing first principle model and availability 
of large volume of process data, data-based state estimation is more 
widely used in industry than the first principle model-based method. 
When large volume data is available in the industry, the data set can 
be trained to estimate the existing process, even under disturbances. 
For a new process without enough process data, the data training can 
be a challenge. A possible solution for this disadvantage is the hybrid 
model, which combines both data-based and model-based techniques 
[19]. It can overcome the extensive effort for model building and also 
require less data for the model training.
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