
Leon Ardekian1*, Leah Levit2, Rafael Ishabaiv1 and Michael Levit3
1Department of Oral and Maxillofacial Surgery, Smile4 You Clinic, Israel
2Department of Oral and Maxillofacial Surgery, Smile4 You Clinic, Israel
3Department of Oral and Maxillofacial Surgery, Smile4 You Clinic, Israel

Abstract

Posterior atrophic maxilla is very challenging to every surgeon to limit the implant placement. There are many surgical techniques are described for the reconstruction. In that sinus floor augmentation, alveolar distraction, guided bone regeneration, zygomatic implants and the use of pterygoid, pterygo-maxillary or pterygo-tubrosity implants.

Introduction

The posterior maxilla has challenged surgeons by posing many limitations to implant placement [1,2]. Low bone quality and quantity, pneumatization of the maxillary sinus and poor accessibility to the area, are among the main reasons that make placement of dental implants difficult [3]. Furthermore, low bone density at implantation site reduces implant success due to impairment of primary stability [4-6].

Many surgical techniques have been described for reconstruction of the posterior maxilla, including sinus floor augmentation, alveolar distraction, guided bone regeneration, zygomatic implants and the use of pterygoid, pterygo-maxillary or pterygo-tubrosity implants [7-11]. Among all the techniques mentioned above, the most popular one is the sinus floor augmentation, which has gained popularity over the last three decades [10,12]. However, it has its own drawbacks. The most described complications of sinus augmentation are sinus membrane perforation, bone graft infection and sinusitis [10-16]. This extensive surgical intervention could be avoided by utilizing a simpler method, such as pterygoid implants (Figures 1 and 2).

Materials and Methods

Twenty patients (10 men, 10 women) with a mean age of 55 years (range, 44 years to 71 years) were treated with pterygoid implants (Bioline Dental Implants, Frankfurt, Germany) at a private practice facility from 2015 to 2016. Fifteen patients had bilateral pterygoid implants, and five patients had a unilateral implant. The total number of implants was 35. A Cone Beam Computed Tomography (CBCT) was performed in each case, in order to evaluate the proximity to the sinus and to assess the pterygoid area. Risks, benefits, and alternatives of the pterygoid implants were described to the patients, and a written informed consent was obtained from each patient. Ethical approval was not applicable for this study, due to the retrospective nature of data analysis.

A full mucoperiosteal flap was raised, and the pterygomaxillary fissure was identified and probed (Figure 1). Implant site preparation began with marking the alveolar ridge by a small round bar in the site previously occupied by the first or second molar tooth. A pilot drill was used in order to establish the initial direction of the pterygoid implant, then the implant bed was enlarged by a sequence of drills and osteotoms with increasing diameter, according to the original technique described by Valero and Valero [17-21]. Pterygoid implants were diagonally inserted superiorly, posteriorly and distally, towards the pterygopalatine fossa of the sphenoid bone (Figure 2). The distal angulation of the pterygoid implants varied between 35 degrees to 55 degrees, in relation to the sagittal plane. This angle size was determined by the maxillary sinus floor and by the tuberosity height [18-20,22]. All implants were submerged for a healing period of 4 months to 10 months. Complete absence of any noticeable mobility of the implant at stage II surgery was considered as...
success and osseointegration. If the implant was mobile to any extent, it was noted as failure. The implant lengths were 16 mm, 18 mm, 20 mm and 22 mm.

Results

Thirty two of 35 pterygoid implants successfully osseointegrated, yielding a survival rate of 91.4%. The average follow up period after stage I surgery was 11 month (range 7-16). The failed implants were detected only at stage II surgery. No failures were detected after prosthetic loading within the follow up period. No bleeding or other intraoperative or postoperative adverse events were observed.
Discussion

The aim of the present study was to evaluate the survival rate of pterygoid implants in a short to moderate time period. The reported survival rates of pterygoid implants reported in this study are in the range reported in the literature to date. Balshi et al. [19-21,23] reported three clinical series of pterygoid implants. In 1995, they made a preliminary study in which 51 pterygoid implants with machined surface were placed in 41 patients, with a follow-up period of 1 month to 63 months. The success rate was 86.3%. In 1999, they increased the sample to 356 implants, obtaining a cumulative success rate of 88.2%, after a mean loading period of 56 months. Of note, most implants (41) failed at stage II surgery before loading, and only one implant failed after loading. In 2005, they placed 164 pterygoid implants with titanium oxide surfaces. After 54 months of follow-up, the success rate was statistically significantly higher than in previous studies (96.3%). The authors related this additional 8.1% percentage points gain in implant survival to the change of implant surface from machined to titanium oxide. Vrieilinck et al. [24] placed 14 pterygomaxillary implants and had a success rate of 71%, after an average follow-up of 6 months to 24 months. The failures occurred because the implants did not follow the direction of the prepared implant bed and were, therefore, out of place. Ridell et al. [25] reported a 100% success rate after placing 22 implants in the maxillary maxillary area and after follow-up of 12 years.

Pterygoid implants are anchored in the junction of three different bone structures: The pyramidal process of the palatal bone, the pterygoid process of the sphenoid bone and the maxillary tuberosity. This insertion into three different anatomic structures may often lead to improper terminology usage when relating to pterygoid implants. There is a significant difference between pterygoid and tuberosity implants. Pterygoid implants are engaged in the dense cortical part of the pterygoid bone and the palatal bone, while tuberosity implants are directed and engaged in cancellous maxillary bone of poor quality [14,15,17]. Placement of dental implants in the pterygo-maxillary region provides posterior bone support for the prosthesis, without sinus floor augmentation, and can achieve better distribution of masticatory forces in comparison to conventional maxillary implants. This benefit allows rehabilitating patients with satisfactory full arch fixed maxillary prosthesis, which usually spanned from second molar to second molar (Figure 3) [17,19,20].

Due to the special architectural features of the pterygo-maxillary area, placement of dental implants in this area is technically more difficult in comparison to other regions of the maxilla. Computer Aided Design - Computer Aided Manufacturing (CAD-CAM) is of great value in planning and placing pterygoid implants, as well as other implants that bypass the maxillary sinus. The surgical guide enables the clinician to determine the exact direction of drilling and the correct length of pterygoid implants (Figure 4). Despite the complexity of this surgical procedure, the risk of complications is very low [14-16]. A possible major complication that may occur during the surgery is massive bleeding from the maxillary artery or its branches, which are situated 1 cm superiorly to the pterygomaxillary suture [17,21,26]. This complication is rare and has not been mentioned in the literature, according to the best knowledge of the authors. Regardless of the surgical technique used, care must be taken to avoid damaging either the maxillary artery or its branches within the pterygopalatine fossa. However, the distance from the inferior end of the pterygomaxillary suture to the maxillary artery is 25 millimeters, which makes this area safe for working. Valero´n and Valero´n [27] described a minor venous bleeding, caused by over-insertion of the drill a few millimeters into the venous plexus in the retropterygoid area. The bleeding was stopped with local hemostatic methods. Krekmanov reported difficulties when anchoring the implants into the pterygoid process [28]. An implant was lost during placement due to over-drilling beyond the pterygoid process. Vrieilinck et al. [24] lost 4 of 6 implants due to problems in placing them in the initially drilled implant bed. The repeated attempts to drill in different directions, in order to improve the design of the implant bed, resulted in insufficient bone anchorage, which jeopardized primary stability of the pterygoid implant (Figure 5).

Conclusion

Pterygoid implants have a high success rate, minor and infrequent complications and similar bone loss in comparison to conventional implants.

Pterygoid implants are considered as a good alternative for extensive augmentation procedure in patients with atrophic maxilla.

References

