Controlled-Release Preparation Containing Meglitinide for Treatment of Type-II Diabetes Mellitus

Chisato Makino*
Institute for Innovation, Ajinomoto Co, Japan

Abstract

Meglitinides promote pancreas insulin secretion, and have a short half-life in plasma; they are often termed "short-acting-type insulin secretagogues". They primarily control postprandial blood glucose. On the basis of these characteristics, various controlled-release preparations containing meglitinides are currently being developed to achieve precise and/or timely control of blood glucose, or to reduce the dosing frequency, or to enable a more convenient administration route. If approved, it is hoped that they will increase quality of life for diabetes patients.

Keywords: Meglitinides; Blood glucose level; Controlled-release preparation

Introduction

Meglitinides are antidiabetic agents that primarily control postprandial blood glucose (PBG). As they have a short half-life in plasma, and promote short-term pancreatic insulin secretion [1-3], they are often termed "short-acting type insulin secretagogues". They include nateglinide [4,5], Repaglinide [6] and mitiglinide [7]. At present, commercially available meglitinide formulations are immediate-release preparations [4,5]. These are taken three times a day, immediately before meals. However, on the basis of the above pharmacokinetic and pharmacodynamic characteristics, meglitinides are considered to be suitable for use as active ingredients in controlled-release preparations for controlling blood glucose. There are demands for the following with respect to type-II diabetes medications: (1) sufficient and timely control of both PBG and fasting blood glucose (FBG); (2) control of early-morning high blood glucose; (3) reduction of dosing frequency; and (4) different administration route. The last two are in order to increase convenience. Since the first controlled-release nateglinide preparation was reported to control both PBG and FBG, in 2000 [8], there have been numerous reports about controlled-release meglitinide preparations. However, many pharmacological challenges remain for improved medications for type-II diabetes mellitus. In this review, aspects of formulation design and pharmacological efficacy are discussed with respect to controlled-release meglitinide preparations that are currently being developed.

Control of Both PBG And FBG, or Early-Morning High Blood Glucose

The first reports about an oral, controlled-release preparation containing nateglinide (12) for reduction of both PBG and FBG were reported by Makino et al. [1-3, 8-10]. They investigated enteric-coated granules [1,8-10] and matrix granules/tablets [2,3,8] as the sustained-release part of the formulation, and designed a single-unit dosage form including both an immediate-release part and a sustained-release part. The immediate-release part primarily reduces PBG, and the sustained-release part primarily reduces FBG. In the case of commercially available immediate-release nateglinide preparation (e.g. Fastic® tablets), nateglinide was released within 60 min in an in vitro dissolution test, and it was primarily PBG that decreased, with FBG not having decreased in healthy beagle dogs by 8 hours after administration [1,2,8,10].

Enteric-coated granules are coated with an anionic polymer as an enteric material, and show a pH-dependent release profile in vitro. Under acidic conditions, as the enteric material does not dissolve, almost none of the active ingredient is released. At neutral pH, on the other hand, the enteric material dissolves, and the active ingredient then starts to be released. Sustained release has been observed in vivo with administration of enteric-coated granules together with food [1,3,11-13].

Matrix granules/tablets consist of both an active ingredient and a matrix, such as a hydrophilic polymer, hydrophobic polymer, or lipid. The active ingredient disperses in a mesh structure composed of the matrix. The release is generally time-dependent [14], because the matrix dissolves...
sparinglly and/or slowly, and the matrix structure then suppresses
diffusion of the active ingredient from the preparation.

The above sustained-release part containing nateglinide reduced
FBG from 9 to 12 hours in vivo [1,2,8], and when both an immediate-
release part and a sustained-release part containing nateglinide were
administered, both PBG and FBG were reduced. Similar studies have
been reported by other research groups [15,16]. These preparations are
considered to be suitable for controlling PBG and FBG in a timely
and precise manner.

Furthermore, with the objective of reducing the early-morning
high blood glucose level, a retard-release preparation was investigated
[17]. This preparation was designed using Pulsincap™ technology
[18], and is composed of a water-insoluble capsule body that is filled
with nateglinide, and sealed swellable hydrogel plug [17]. When the
plug swells, nateglinide starts being released (retard release). This
preparation was found to start to release nateglinide 4 hours after
administration in vivo [17], and is expected to control early-morning
high blood glucose level when taken just before the patient goes to
bed.

Reducing Dosing Frequency

With the aim of reducing dosing frequency, many sustained-
release oral preparations have been investigated. The principal release
technology is matrix technology [19-32], and this is considered to be
the reason why matrix preparations can be manufactured more
easily than coated preparations. As mentioned above, one matrix
preparation showed time-dependent release, and continuous control
of blood glucose level was achieved, so reduction of dosing frequency
is expected. Furthermore, there have been reports of unique dosage
forms that are different from the above matrix technology, such as
mucoadhesive microparticles [33] and osmotic tablets [34].

Mucoadhesive microparticles constitute a matrix preparation that
contains an adhesive polymer as the matrix. After oral administration,
the microparticles adhere to the digestive tract epithelium, especially
in the stomach, and gradually release the active ingredient. This
preparation is suitable for sustained release of anti-diabetic agents
that are absorbed only in the upper intestine.

Each osmotic tablet consists of a semipermeable membrane shell,
a core composed of an osmotically active ingredient, and a polymeric
plug swells, nateglinide starts being released (retard release). This
preparation was designed using Pulsincap™ technology
[17]. When the
plug swells, nateglinide starts being released (retard release). This
preparation was found to start to release nateglinide 4 hours after
administration in vivo [17], and is expected to control early-morning
high blood glucose level when taken just before the patient goes to
bed.

Change of Administration Route to Improve
Convenience

In general, the dosage form for medications for type-II diabetes
mellitus is tablets, because these are easy for patients to take. However,
a nasal preparation is considered preferable to an oral preparation
because it can be taken easily without water. Elmowafy et al. [36]. have
reported about a controlled-release, nasal preparation containing
repaglinide [36,37]. This preparation consisted of microparticles (a matrix preparation) that were prepared by spray-drying, and
consisted of repaglinide and polysaccharides [36,37]. It showed a
time-dependent release profile in vitro. When administered nasally to
male, Wister albino rats, this preparation reduced the blood glucose
level over 24 hours [36,37], and it is expected to be more useful for
diabetic patients than oral preparations.

Conclusion

Numerous controlled-release meglitinide preparations are
currently being developed, for use as improved medications for type-
II diabetes mellitus. If approved, it is hoped that they will help to
increase quality of life for diabetic patients.

References

1. ChisatoMakino, Ninomiya, Hidetoshi Sakai, HaruoOrita, Akira
Okano,AkiraYabuki. Effect of Decrease in Both Postprandial Blood
Glucose (PBG) and Fasting Blood Glucose (FBG) Levels in Normal Beagle
Dogs with Nateglinide Enteric Coated Granules and Immediate Release
2. ChisatoMakino, Hidetoshi Sakai, Akira Okano, Akira Yabuki. Design of
NateglineControlled Release Tablet Containing Erosion Matrix Tablet
and Multiple Administration Study in Normal Beagle Dogs. Chemical and
Dependence of Dissolution Profiles of NateglineMatrix Granules.
IROYUKUGAKU (Jpn. J. Pharm. Health Care Sci.).2013;39(10):608-
14.
4. Takao Ikemoue, Kyoko Okazaki, Shoji Fujitani, Tsuchiyi Y, Megumi
([C]-N-[(trans-4-isopropylcyclohexanecarboxyl-yl)-D-phenylalanine],
on postprandial blood glucose excursion : Comparison with voglibose
1997;55:159-63.
6. Package insert of Surepost®, the 4th ed. Dainippon Sumitomo Pharm.
Co. 2012.
8. Chisato Makino, Nobutaka Ninomiya, Haruo Orita, Hidetoshi Sakai,
Administration. WO. 2001;47557.
9. Makino C, Sakai H, Orita H, Yabuki A. Relationship between Effect of
Decrease in Blood Glucose Levels and Dissolution Behaviors in Nategline
Enteric Coated Granules. IROYU YAKUGAKU. Jpn J Pharm Health Care
10. Makino Chisato, Sakai Hidetoshi, Yabuki Akira. Nategline Controlled
Release Tablet Containing Compressable Enteric Coated Granules.
12. Takagishy I. Jyouseiseizai no sekkai to buaobaireibiritii (Design of
prolonged release formulation and bioavailability). J Jpn Pharm.
13. Ogura T. Keikouyousefe mukeikusebushitsu no seizaiokusei to
14. Peseidy L Maman, Roberto Ruiz-Caro, Maria D Veiga. Matrix Tablets:
The Effect of Hydroxypropyl Methylcellulose/Anhydrous/Dibasic
Calcium Phosphate Ratio on the Release Rate of a Water-SolubleDrug
Through the Gastrointestinal Tract I. In Vitro Tests. AAPS PharmSciTech.
15. M D Bhadange, A B Darerek, R B Saudagar. Design, Development and
Evaluation of Bilayer Tablet using Nategline for the Management of


