Flower Extracts of Quisqualis Indica as Novel Antibacterial Agent against some Pathogenic Bacteria

Devalenea Mukherjee and Goutam Chandra*
Department of Zoology, The University of Burdwan, India

Abstract
Quisqualis indica is an impressive tropical ornamental vine. The present study was focused on elucidating the antibacterial potentiality of the crude extract and different solvent extracts of flowers of Q. indica using agar well diffusion method against pathogenic bacteria Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis. Petroleum ether extractive of flowers showed the best result against the test bacteria. In case of gram positive bacteria S. aureus and B. subtilis inhibition zones of 26 mm and 23 mm was seen respectively and in case of gram negative bacteria 20 mm and 22 mm of inhibition zone was seen against E. coli and P. aeruginosa respectively at a concentration of 50 mg/ml. Secondary phytochemicals like alkaloids, steroids, flavonoids and phenols were detected. The MIC values were 27.0, 30.0, 38.0 and 40.0 µg/ml for S. aureus, E. coli, P. aeruginosa and B. subtilis respectively. Hence the petroleum ether extract of Q. indica flowers may be treated as a novel source in producing effective antibacterial agent.

Keywords: Quisqualis indica; Antibacterial activity; Minimum inhibitory concentration

Introduction
The arbitrary consumption of immunosuppressive drugs, antibiotics with huge side effects is worsening the situation day by day. So there is a need to search for new eco-friendly strategies to manage microbial infections with minimal ecological hazards. India is the home town of largest medicinal herbs and more than 6,000 medicinal plants have been used in primary healthcare [1]. Nowadays researchers have studied the antibacterial properties of various botanicals against different pathogenic bacteria [2-4]. The present study was carried out to investigate the antibacterial property using an ethno pharmacologically important plant, Quisqualis indica (Linn.) commonly known as rangoon creeper under laboratory condition. It is an ornamental plant but due to presence of various secondary phytochemicals it also lights off in traditional medicines over long period of time. Decoctions of the roots, seeds and fruits used as antihelmintic, fruit decoction for gargling; leaves to relieve pain caused by fever and flowers are used to relieve headache [5]. This is the first ever attempt to control the aforesaid bacteria with the extracts of Q. indica flowers as per literature review is concerned.

Materials and Methods
The flowers of Q. indica were precisely collected from Burdwan district (23°16’N, 87°54’E), WB, India. They were taxonomically legitimated by Prof. A. Mukherjee, Department of Botany, The University of Burdwan, Burdwan. A herbarium (Voucher No: GCZD-13) has been deposited in the Mosquito, Microbiology and Nanotechnology Research units, Department of Zoology, The University of Burdwan.

Four bacterial strains namely, Bacillus subtilis MTCC 441, Staphylococcus aureus MTCC 2940, Escherichia coli MTCC 739 and Pseudomonas aeruginosa MTCC 2453 were collected from repository of Mosquito, Microbiology and Nanotechnology Research units, Parasitology Laboratory. At 37°C bacteria were cultured in nutrient broth Hi-Media, M002 (Hi-Media Laboratories Limited Mumbai, India) and maintained on nutrient agar slants at 4°C with regular periods of subculture.

Antibiotic discs (Span Diagnostics Limited, Surat, India) Gentamycin (10 g), Norfloxacin (10 g), Ampicillin (10 g), PenicilllinG (10) and Cloxacillin (10) were used during the present experiment.

Fresh flowers of Q. indica were cleaned in tap water and soaked on a paper towel. Afterwards they were minced by mechanical grinder and the liquid was filtered by Whatman’s no-1 filter paper. The filtrate was considered as a stock solution (100% concentration) for the experiment.
Table 1: Susceptibility of bacterial strains against some commercially antibiotics.

<table>
<thead>
<tr>
<th>Antibiotics (µg/ml)</th>
<th>Diameter of inhibitory zones (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. aureus</td>
</tr>
<tr>
<td>Gentamycin (10)</td>
<td>13</td>
</tr>
<tr>
<td>Norfloxacin (10)</td>
<td>20</td>
</tr>
<tr>
<td>Ampicillin (10)</td>
<td>18</td>
</tr>
<tr>
<td>Penicillin G (10)</td>
<td>22</td>
</tr>
<tr>
<td>Cloxacillin (10)</td>
<td>0</td>
</tr>
</tbody>
</table>

For solvent extraction, standard method was followed [6]. Two different solvents viz. petroleum ether and Chloroform: methanol (1:1 v/v) were used. Elutes were collected from chamber and made concentrated through evaporation in a rotary evaporator. The extracts were preserved at 4°C in a refrigerator for further bioassay.

Antibiotic was done by disc diffusion method (NCCLS, 1993) with commonly used antibiotics. The antibiotic assay was conducted by agar well diffusion method [7]. DMSO was taken as control for solvent extracts and sterile distilled water was taken as control for crude extract. The plates were incubated for 24h at 37°C. Antibacterial activities were evaluated by measuring inhibition zone. All the given data are calculated by taking the average value of three sets of observations.

MIC was determined by dilution method as described by National Committee for Clinical Laboratory Standards. Phytochemical tests of flowers of Q. indica were done according to the standard method of Sofowara [7-10].

Table 2: Antimicrobial sensitivity assay of crude and solvent extracts of flowers of Quisqualis indica.

<table>
<thead>
<tr>
<th>Flower extracts</th>
<th>Diameter of inhibitory zones (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. aureus</td>
</tr>
<tr>
<td>Crude extract of flower (1 ml)</td>
<td>20</td>
</tr>
<tr>
<td>Petroleum ether extracts of flower (50 mg/ml)</td>
<td>26</td>
</tr>
<tr>
<td>Chloroform: methanol (1:1 v/v) extracts of flower (50 mg/ml)</td>
<td>8</td>
</tr>
<tr>
<td>Sterile distilled water</td>
<td>0</td>
</tr>
<tr>
<td>Dimethylsulphoxide</td>
<td>0</td>
</tr>
</tbody>
</table>

concentrations (0.5, 1.0, 1.5, 2.0 and 2.5 ml) were set up by adding distilled water with the stock solution.

For solvent extraction, standard method was followed [6]. Two different solvents viz. petroleum ether and Chloroform: methanol (1:1 v/v) were used. Elutes were collected from chamber and made concentrated through evaporation in a rotary evaporator. The extracts were preserved at 4°C in a refrigerator for further bioassay.

Antibiotic was done by disc diffusion method (NCCLS, 1993) with commonly used antibiotics. The antibiotic assay was conducted by agar well diffusion method [7]. DMSO was taken as control for solvent extracts and sterile distilled water was taken as control for crude extract. The plates were incubated for 24h at 37°C. Antibacterial activities were evaluated by measuring inhibition zone. All the given data are calculated by taking the average value of three sets of observations.

MIC was determined by dilution method as described by National Committee for Clinical Laboratory Standards. Phytochemical tests of flowers of Q. indica were done according to the standard method of Sofowara [7-10].

Statistical analysis

The results are presented as mean ±SD. The data were analysed by using Excel and Easy plot software.

Results and Discussion

Table 1 depicts the antibiógram assay of the test Gram positive and Gram negative bacterial strains against commonly used antibiotics. The trend of susceptibility of bacterial strains to crude

Petroleum ether extract of Q. indica has been proved to be a bioactive antibacterial agent. Isolation of individual compounds and their biological activities required to be uncovered to enhance its pharmacological importance in the field of research.

References