Impaction of Canine Tooth after Alveolar Bone Graft in Patients with Cleft Lip and Palate: A Systematic Review

Marinho N1, Leyendecker AJr2, De Arruda AJA3, Tanikawa DYS1,3,4, Calasans-Maia M5 and Bueno DF3,3*

1Department of Surgery, Hospital Sírio Libanés, Brazil
2Department of Oral Surgery and Pathology, Universidade Federal de Minas Gerais, Brazil
3Department of Surgery, Hospital Municipal Infantil Menino Jesus, Brazil
4Department of Plastic Surgery, Universidade de São Paulo, Brazil
5Department of Oral Surgery, Universidade Federal Fluminense, Brazil

Abstract

Cleft Lip and Palate (CL/P) is the most common congenital facial malformation. One of the surgeries that need to be performed to CL/P rehabilitation is the alveolar bone graft which has as one of its functions to allow the eruption of the canine tooth. The aim of this study was to conduct a systematic review on articles that showed the rate of impacting permanent canine tooth in the alveolar cleft area after the secondary bone grafting surgeries in patients with CL/P. An electronic search with English-language studies was undertaken in the following databases: Medline/PubMed, Web of Science and Scopus. A total of 468 were selected and 119 were fully read and 35 fulfilled the inclusion criteria. The articles analyzed showed that the impacted canine tooth rate in the alveolar bone grafted region is not frequently reported after the secondary alveolar bone graft and a very wide variation in the canine impaction rate, ranging from 0% to 93.75%. Due to the risk of bias in the studies included in this literature review we observed that there is insufficient evidence to relate the impact rate of permanent canines after the alveolar bone graft with the type of bone source used or with the achievement of orthodontic maxillary expansion prior to the secondary bone graft.

Introduction

Cleft Lip and Palate (CL/P) is the most common craniofacial malformation present at birth. Its worldwide incidence was estimated at 1:1,000, but varies according to the ethnicity, population studied, and geographic origin [1]. In Brazil, estimates of birth prevalence for CL/P ranged from 0.28 to 1.54:1,000 [2]. Brito et al., [3] demonstrated that the contribution of genetic factors to CL/P varies in different regions of Brazil, thus altering the prevalence among several regions of the country.

An essential step in the surgical treatment of CL/P is the reconstruction of the alveolar bone through the transplantation of a bone graft, usually an autogenous cancellous bone. Secondary Alveolar Bone Graft (SABG) became a well-established procedure since the original work of Boyne and Sands in 1972 [4]. Subsequently, Bergland et al., [5,6] suggested that the surgery should be performed at the mixed dentition stage after the specific orthodontic treatment, alignment and expansion of the dental arch of the maxilla. Several donor sites have already been used for the reconstruction of the alveolus, including iliac crest, calvaria, rib, tibia or mandible [4,7-10]. The iliac crest is considered the gold standard donor source of bone for alveolar reconstruction [11]. However, harvesting autologous bone grafts is associated with a greater morbidity. This morbidity can be eliminated through the use of tissue engineering strategies and growth factors [12-14].

One of the objectives of the Secondary Alveolar Bone Grafting (SABG) surgery is to promote the eruption of the permanent canine and, sometimes, the lateral incisor in the grafted region [15,16]. Other important functions are (1) stabilization of the maxilla, (2) closure of oro-nasal fistulas, (3) restoration of continuity of the dental arch, (4) improving the projection and symmetry of the upper lip, (5) providing periodontal support for the teeth adjacent to the alveolar cleft, (6) promote support for the base of the nose and (7) allow the installation of dental implants when indicated [4-6,17-21].

The success and outcome of SABG are evaluated by a variety of clinical, radiographic, and tomographic measurements. The Bergland scale, the Chelsea indices and the Kindelan indices are the most used for the quantification and location of the newly formed bone within the postoperative...
grafted area [5,6,22]. However, few studies have used spontaneous eruption of the canine tooth or the lateral incisor tooth in the grafted region as one of the success factors.

The erupted canine tooth, with adequate periodontal support, allows closure of the orthodontic space and avoids the need for a final prosthesis [23]. However, a canine impaction rate exists even after SABG, which leads to the need for surgical exposure of the crown of the tooth and orthodontic traction of the canine tooth. According to the literature, the risk of impaction of the permanent upper canine in children with alveolar fissures is about 10 times to 20 times higher in comparison with the general population [24-27].

In the present review, the literature on SABG was examined to describe the frequency of canine tooth impaction in the grafted area in patients with complete unilateral or bilateral cleft palate who underwent SABG surgery, and to describe if there is a relationship between the bone source used for the graft and the canine tooth impaction. It will also be described if the maxillary expansion was made before the SABG.

Materials and Methods

This systematic review has been registered in the International Prospective Register of Systematic Reviews (PROSPERO) (CRD42018106571). The methodology of the study followed the recommendations of the Cochrane Handbook for Systematic Reviews of Interventions and the PRISMA-P protocol.

PRISMA-P protocol and the “focused question” was: what is the rate of impaction of the superior canine in patients with cleft lip and palate submitted to a secondary alveolar bone graft?

The primary outcome was the variable rate of maxillary canine impaction. The secondary endpoint was to evaluate the relationship between the graft material and previous orthodontic treatment with the canine impaction rate after bone grafting.

Information sources

In order to avoid the risk of selection bias, the inclusion of the study and the extraction of data were performed independently by two researchers (NM and AL Jr) and disagreements were resolved through discussion with the other authors. The other authors also performed a review of the articles selected and included in this review to ensure that all the studies included in this systematic review have comparable methodological quality and that the populations surveyed were also similar. The quality of all primary studies included in this systematic review was assessed by all researchers involved in this study and, as a result, only studies with plausible valid association results were included in this systematic review. The review authors were not blind to author(s), institution or publication site.

We selected randomized clinical trials, case-control studies, retrospective or prospective cohort studies, cross-sectional studies and case reports. Previous scientific literature review articles were not used in this review. The electronic databases used were: Medline/PubMed, Web of Science and Scopus. The date of the last search was on 30/09/2018. Only English-language studies, defined in the database search, were selected. In addition, only articles published from 01/01/1987 were included in this review.

Search strategy

An electronic customized search of scientific articles published between 1984 and September 2018 using PubMed/Medline, Scopus and Web of Science databases was conducted. The keywords used in the selection process were “(((((((((((((canine teeth) OR eruption of the canine) OR eruption teeth) OR eruption of permanent canine) OR tooth eruption) OR impacting canine teeth) OR impacted canine teeth) OR impaction of the maxillary canine) OR canine impaction) OR canine tooth impacted) OR canine tooth impaction) OR canine teeth impacted) OR canine teeth impaction) OR canine eruption) OR maxillary impacted canines)) AND ((((((((((bone transplantation) OR alveolar bone grafting) OR secondary alveolar bone grafting) OR alveolar cleft repair) OR alveolar cleft grafting) OR secondary autogenous bone grafting) OR alveogenous bone graft) OR alveolar cleft grafting) OR alveolar reconstruction) OR autogenous bone graft) OR autogenous bone grafting) OR bone graft) OR secondary bone grafting)) AND ((((((((cleft palate) OR cleft lip) OR (cleft lip and palate)) OR (cleft lip and palate)) OR (patients with cleft lip and palate)) OR patients with alveolar clefts) OR patients with clefts) OR cleft patients) OR alveolar cleft) OR alveolar clefts))”.

The possible eligible studies were preliminarily determined by reviewing the titles and abstracts of all studies resulting from the
remedypublicationsllc.com | http://clinicsinsurgery.com/ 1909 | Volume 4 | Article 2415

research. The full texts of the possible eligible studies were obtained for final judgment.

Selection criteria

For the inclusion of the articles in this review, we included articles in which individuals with bilateral or unilateral CP were submitted to the secondary alveolar bone graft, from autogenous, allogenic, heterogeneous bone source that used synthetic bone substitutes or growth factors, with varying age between six and 18 years. And the authors evaluated the frequency of eruption of the canine teeth that erupted spontaneously in the region of the alveolar cleft or that impacted and required surgery for surgical exposure of the crown.

Studies with syndromic CL/P patients and studies with bone grafts simultaneous to pre-maxilla osteotomy surgery were excluded from the review. In addition, other exclusion criteria used were a sample size less than or equal to five patients and studies that included patients with canines already erupted before the bone graft, that is, tertiary bone graft. Studies with postoperative evaluation with less than 6 months were also excluded.

Results

A total of 468 publications were identified through the search of electronic databases and 13 were searched manually, and 75 were duplicated, leaving 406 articles for the reading of titles and abstracts, of which 287 were excluded after screening.

Complete articles were obtained from the 119 remaining studies, while only 35 of them were considered eligible for review. The process of identification of the study is presented in Figure 1. Of the 35 eligible and selected studies, nine of them [27-34,57] had as their main outcome variable the evaluation of spontaneous eruption or canine impaction in the grafted area [27-37] (Table 1). All 26 other articles reported spontaneous impact or eruption rate within the results or discussion of the article. Regarding the age at which SABG was performed, in four studies the surgery was performed at an average age between six and eight years of age and in the other 31 studies the surgery was performed at an average age ranging from nine to 12 years [27,29,30,35].

The mean rate of impacted canine teeth in the alveolar region after SABG among the 35 articles reviewed was 22%, and 19 studies had an impaction rate between 0% and 20%, 13 articles had an impaction rate between 21% and 40% and four articles had the impaction rate above 40%, graphically represented in Figure 2. There was no impaction of the canine tooth in the article by Alonso et al., [14], in which 16 patients were analyzed in total, eight in the group that used the iliac crest as the bone source and eight in the group that used growth factors (rhBMP-2).

A study by Lazarou et al., [31], which analyzed the success of bone grafting with the use of a calcium sulfate-based bone substitute, also did not observe canine tooth impaction in any of the 10 patients in the sample. The study by Newlands et al., [36] with 94 patients submitted...
Table 1: Studies selected to be part of this manuscript.

<table>
<thead>
<tr>
<th>Ref</th>
<th>Participants</th>
<th>Age of Graft (years) mean</th>
<th>Age min (years)</th>
<th>Age max (years)</th>
<th>Sex Fem</th>
<th>Sex Male</th>
<th>Study Type</th>
<th>Type of graft</th>
<th>Canine Impaction rate</th>
<th>Anterior maxilla expansion</th>
<th>Type of cleft</th>
<th>Post-operative examination</th>
<th>Evaluation of success</th>
<th>Post-operative evaluation time</th>
<th>Age at follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>[48]</td>
<td>61 (G1=39 and G2=22)</td>
<td>9.5</td>
<td>8</td>
<td>13.1</td>
<td>18</td>
<td>43</td>
<td>Retrospective study</td>
<td>Iliac crest</td>
<td>5%</td>
<td>Yes, those who needed</td>
<td>UC</td>
<td>X-ray</td>
<td>Degree of bone resorption, presence of complications, periodontal problems</td>
<td>1 year</td>
<td>Between 10 and 12 years</td>
</tr>
<tr>
<td>[8]</td>
<td>17</td>
<td>10.8</td>
<td>NR</td>
<td>NR</td>
<td>4</td>
<td>13</td>
<td>Retrospective study</td>
<td>Iliac crest</td>
<td>29.40%</td>
<td>Yes, those who needed</td>
<td>UC</td>
<td>X-ray</td>
<td>Periodontal support and alveolar bone height</td>
<td>0.67 years</td>
<td>Between 10 and 12 years</td>
</tr>
<tr>
<td>[47]</td>
<td>24</td>
<td>12.75</td>
<td>9</td>
<td>16</td>
<td>NR</td>
<td>NR</td>
<td>Retrospective study</td>
<td>Allogeneic (bank)</td>
<td>17.40%</td>
<td>Yes, 50%</td>
<td>UC</td>
<td>X-ray</td>
<td>Periodontal evaluation/Clinical lateral eruption in the dent region</td>
<td>3.1 years</td>
<td>Above 12 years</td>
</tr>
<tr>
<td>[40]</td>
<td>43</td>
<td>11</td>
<td>8.6</td>
<td>16.3</td>
<td>15</td>
<td>28</td>
<td>Retrospective study</td>
<td>Iliac crest</td>
<td>5%</td>
<td>Yes, 100%</td>
<td>UC (29) and BC (14)</td>
<td>X-ray</td>
<td>Evaluation of alveolar bone crest and canine eruption</td>
<td>3.1 years</td>
<td>Between 10 and 12 years</td>
</tr>
<tr>
<td>[36]</td>
<td>94</td>
<td>10.5</td>
<td>8</td>
<td>18</td>
<td>25</td>
<td>47</td>
<td>Retrospective study</td>
<td>Iliac crest</td>
<td>4%</td>
<td>Yes, 42%</td>
<td>UC (50) and BC (22)</td>
<td>X-ray</td>
<td>Evaluation of alveolar ridge crest and canine eruption</td>
<td>1 year</td>
<td>Above 12 years</td>
</tr>
<tr>
<td>[53]</td>
<td>14</td>
<td>9.1</td>
<td>6</td>
<td>16</td>
<td>4</td>
<td>10</td>
<td>Prospective study</td>
<td>Iliac crest</td>
<td>21.42%</td>
<td>Yes, those who needed</td>
<td>UC (11) and BC (3)</td>
<td>CT</td>
<td>Mean bone volume and canine eruption</td>
<td>1 year</td>
<td>Below 10 years</td>
</tr>
<tr>
<td>[29]</td>
<td>70</td>
<td>8.4</td>
<td>6.3</td>
<td>10.2</td>
<td>18</td>
<td>52</td>
<td>Retrospective study</td>
<td>Iliac crest</td>
<td>9.20%</td>
<td>Yes, 58%</td>
<td>UC (64)</td>
<td>BC (6)</td>
<td>X-ray</td>
<td>Canine/lateral eruption</td>
<td>4 years</td>
</tr>
<tr>
<td>[28]</td>
<td>50</td>
<td>NR</td>
<td>8.83</td>
<td>15</td>
<td>18</td>
<td>32</td>
<td>Case Report</td>
<td>Iliac crest</td>
<td>28%</td>
<td>Yes, those who needed</td>
<td>UC</td>
<td>X-ray</td>
<td>Canine eruption</td>
<td>3 years</td>
<td>NR</td>
</tr>
<tr>
<td>[10]</td>
<td>101</td>
<td>9.83</td>
<td>NR</td>
<td>NR</td>
<td>29</td>
<td>72</td>
<td>Retrospective study</td>
<td>Mandibular symphysis x iliac crest</td>
<td>G1 35% G2 35%</td>
<td>Yes, 100%</td>
<td>UC (101)</td>
<td>X-ray</td>
<td>Relationship between marginal bone level and original condition.</td>
<td>0.5 years</td>
<td>Between 10 and 12 years</td>
</tr>
<tr>
<td>[54]</td>
<td>57</td>
<td>9</td>
<td>8</td>
<td>11</td>
<td>NR</td>
<td>NR</td>
<td>Prospective study</td>
<td>Iliac crest</td>
<td>18%</td>
<td>Yes, those who needed</td>
<td>46 UC and 11 BC</td>
<td>X-ray</td>
<td>Degree of bone resorption</td>
<td>3 years</td>
<td>Between 10 and 12 years</td>
</tr>
<tr>
<td>[34]</td>
<td>190</td>
<td>9.1</td>
<td>NR</td>
<td>NR</td>
<td>70</td>
<td>120</td>
<td>Retrospective study</td>
<td>Iliac crest</td>
<td>18.90%</td>
<td>Yes, those who needed</td>
<td>UC</td>
<td>X-ray</td>
<td>Canine eruption</td>
<td>0.5 to 22 years</td>
<td>NR</td>
</tr>
<tr>
<td>[39]</td>
<td>65</td>
<td>10.5</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Retrospective study</td>
<td>Iliac crest</td>
<td>5%</td>
<td>Yes, those who needed</td>
<td>UC</td>
<td>X-ray</td>
<td>Bilateral mandible scale</td>
<td>4 years</td>
<td>Above 12 years</td>
</tr>
<tr>
<td>[41]</td>
<td>16</td>
<td>10.5</td>
<td>NR</td>
<td>NR</td>
<td>9</td>
<td>7</td>
<td>Prospective study</td>
<td>Iliac crest</td>
<td>93.75%</td>
<td>NR</td>
<td>UC</td>
<td>CT</td>
<td>Mean Bone Volume/STN-Zeiss Software</td>
<td>1 year</td>
<td>Between 10 and 12 years</td>
</tr>
<tr>
<td>[26]</td>
<td>116</td>
<td>12</td>
<td>4</td>
<td>20</td>
<td>NR</td>
<td>NR</td>
<td>Retrospective study</td>
<td>Iliac crest</td>
<td>15.50%</td>
<td>Yes, those who needed</td>
<td>UC (87)</td>
<td>BC (29)</td>
<td>X-ray</td>
<td>Dental changes and eruption of the canines</td>
<td>5.8 years</td>
</tr>
<tr>
<td>[51]</td>
<td>21</td>
<td>10.58</td>
<td>7.92</td>
<td>13.24</td>
<td>6</td>
<td>15</td>
<td>Prospective study</td>
<td>Iliac crest</td>
<td>12%</td>
<td>Yes, those who needed</td>
<td>UC (17)</td>
<td>BC (4)</td>
<td>CT</td>
<td>Mean Bone Volume/Amrita Software</td>
<td>1 year</td>
</tr>
<tr>
<td>[14]</td>
<td>16 (G1=8 and G2=8)</td>
<td>9.5</td>
<td>8.41</td>
<td>11.5</td>
<td>7</td>
<td>9</td>
<td>Randomized Clinical Trial</td>
<td>Iliac crest x rhBMP-2 (8)</td>
<td>G1 0% G2 0%</td>
<td>Yes, those who needed</td>
<td>UC (22)</td>
<td>BC (8)</td>
<td>X-ray</td>
<td>Palatal vestibular bone width, Chelsea scale and canine/lateral eruption</td>
<td>0.5 years</td>
</tr>
<tr>
<td>[35]</td>
<td>42</td>
<td>6.91</td>
<td>NR</td>
<td>NR</td>
<td>15</td>
<td>27</td>
<td>Prospective study</td>
<td>Mandibular symphysis</td>
<td>47.91%</td>
<td>Yes, those who needed</td>
<td>UC (36)</td>
<td>and BC (6)</td>
<td>X-ray + CT</td>
<td>Palatal vestibular bone width, Chelsea scale and canine/lateral eruption</td>
<td>0.5 years</td>
</tr>
<tr>
<td>[32]</td>
<td>21</td>
<td>10.5</td>
<td>NR</td>
<td>NR</td>
<td>9</td>
<td>12</td>
<td>Retrospective study</td>
<td>Iliac crest</td>
<td>12%</td>
<td>Yes, 100%</td>
<td>UC (17) and BC (4)</td>
<td>CT</td>
<td>Canine Eruption Path/Dolphin Software</td>
<td>1 year</td>
<td>Between 10 and 12 years</td>
</tr>
<tr>
<td>[42]</td>
<td>30</td>
<td>10.2</td>
<td>9</td>
<td>12</td>
<td>20</td>
<td>10</td>
<td>Randomized Clinical Trial</td>
<td>Iliac crest x hetero-genous (bovine hydroxyapatite)</td>
<td>G1 50%, G2 58%</td>
<td>Yes, those who needed</td>
<td>UC (22)</td>
<td>BC (8)</td>
<td>X-ray</td>
<td>Presence of complications and eruption of canines</td>
<td>2 years</td>
</tr>
<tr>
<td>[46]</td>
<td>24</td>
<td>9.1</td>
<td>6</td>
<td>11</td>
<td>11</td>
<td>13</td>
<td>Retrospective study</td>
<td>Oclecran on process</td>
<td>37.50%</td>
<td>Yes, 66.6%</td>
<td>UC (15)</td>
<td>BC (9)</td>
<td>X-ray</td>
<td>Bergland scale and canine eruption</td>
<td>2 years</td>
</tr>
<tr>
<td>[52]</td>
<td>47 (G1=29 and G2=18)</td>
<td>10.32</td>
<td>8.9</td>
<td>13.5</td>
<td>24</td>
<td>23</td>
<td>Retrospective study</td>
<td>Mandibular symphysis x Mandibular symphysis + heterogeneous (beta-TCP)</td>
<td>G1 32.3% G2 18.2%</td>
<td>Yes, those who needed</td>
<td>UC (32)</td>
<td>BC (15)</td>
<td>X-ray</td>
<td>Canine eruption, presence of complications</td>
<td>1 year</td>
</tr>
<tr>
<td>[45]</td>
<td>75</td>
<td>11.5</td>
<td>9</td>
<td>11</td>
<td>28</td>
<td>47</td>
<td>Retrospective study</td>
<td>Iliac crest</td>
<td>33.30%</td>
<td>Yes, 100%</td>
<td>UC</td>
<td>Plaster Model</td>
<td>Goslon Yardstick analysis (study models)</td>
<td>1 year</td>
<td>NR</td>
</tr>
<tr>
<td>[56]</td>
<td>11</td>
<td>9.5</td>
<td>NR</td>
<td>NR</td>
<td>4</td>
<td>7</td>
<td>Retrospective study</td>
<td>Iliac crest</td>
<td>25%</td>
<td>NR</td>
<td>UC (4)</td>
<td>BC (7)</td>
<td>X-ray</td>
<td>Eruption of canines, occlusal relationship, trabecular bone formation, continuity and shape of the arch</td>
<td>1 year</td>
</tr>
</tbody>
</table>
... to bone grafting with iliac crest, presented a canine impaction rate of 4%. A 5% impaction rate was found in four reviewed articles and all four used iliac crest as a bone source: Oh et al., [37] with 40 patients in the sample; Kumar et al., [38] with 56 patients in the sample; Trindade et al., [39] with 65 patients; and a study by Long et al., [40] with 43 patients. Feichtinger et al., [41] found a high value of 94% of canine impaction rate in his study that was considered as discrepant compared to the other articles reviewed. The other studies that had a value above 40%, besides Feichtinger et al., [41], are Mikoya et al., [35] with 42 patients evaluated after alveolar grafting with mandibular symphysis bone with a 48% impaction rate, Thuaksuban et al., [42] with 42 patients evaluated after alveolar grafting with mandibular symphysis group of 22 patients, the impaction rate in the rib group was 13% and in the mandibular symphysis group was 5%. Alonso et al., [14], Ayoub et al., [49] and Hammoudeh et al., [50] used tissue engineering with growth factors (rh-BMPs) in their studies, and obtained 0%, 9% and 19.2% of impacted canine rates, respectively.

Regarding the bone donor site, 22 of the 35 studies reviewed used only the medullary bone of the anterior iliac crest. But other bone sources were found in the selected studies and evaluated the eruption of the canine, such as skull cap, mandibular symphysis, olecranon process, bank graft, bovine synthetic and bovine bone substitutes and growth factors (rhBMP), graphically represented in Figure 3. One study used only a skullcap graft from the parietal region and found a canine impaction rate of 6.25% [44]. Two studies used bone of the mandible of the symphysys region, Mikoya et al., [35] with a total of 42 patients, who presented a rate of 48%, and of Ruiter et al., [45] presented a 33.3% rate in 75 patients. The work of Witsenburg et al., [8] used rib, resulting in 29.4% canine impaction in 17 patients. Nadal et al., [46] used the olecranon process in 37.5% in 24 patients. Maxson et al., [47] used allogeneic bank grafts in 24 patients with a canine impaction rate of 17%, Borstlap et al., [48] compared rib graft in a group of 39 patients and mandibular symphysis graft in another group of 22 patients, the impaction rate in the rib group was 13% and in the mandibular symphysis group was 5%. Alonso et al., [14], Ayoub et al., [49] and Hammoudeh et al., [50] used tissue engineering with growth factors (rh-BMPs) in their studies, and obtained 0%, 9% and 19.2% of impacted canine rates, respectively.

Regarding the maxillary expansion prior to SABG surgery, 28 studies of the 35 selected refer in their studies that the patients were followed by an orthodontist and whenever necessary the expansion was performed [8,10,14,26,28-30,32-36,39,40,42-54]. Among the 29 studies, in five studies, 100% of patients underwent maxillary expansion [10,30,32,40,45]. Only seven out of 35 eligible articles did not report this information [27,31,37,41,55-57].

Among the studies selected, the analysis of spontaneous eruption or canine tooth impaction was performed in the age range of seven to nine years in four articles reviewed, between 10 and 12 years of age in 18 articles, and in ages above 12 years in nine revised articles as shown in Figure 4 [8,10,14,26,27,29-37,39,56].

<table>
<thead>
<tr>
<th>Study</th>
<th>Patients</th>
<th>Gender</th>
<th>Age Distribution</th>
<th>Bone Source</th>
<th>Graft Material</th>
<th>Graft Source</th>
<th>Eruption of Canines</th>
<th>Eruption of Canines Survival</th>
<th>Method of Evaluation</th>
<th>Risk of Canine Impaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31]</td>
<td>10</td>
<td>10.4</td>
<td>9 12 3 7</td>
<td>Prospective Study</td>
<td>Synthetic (calcium sulphate)</td>
<td>0%</td>
<td>NR</td>
<td>UC</td>
<td>X-ray</td>
<td>Eruption of Canines</td>
</tr>
<tr>
<td>[43]</td>
<td>10</td>
<td>12.6</td>
<td>9 16 10 0</td>
<td>Prospective Study</td>
<td>Iliac crest</td>
<td>50%</td>
<td>Yes, 50%</td>
<td>UC (8) BC (2)</td>
<td>X-ray</td>
<td>Evaluation of alveolar ridge crest and canine eruption</td>
</tr>
<tr>
<td>[27]</td>
<td>68</td>
<td>8.5</td>
<td>NR NR 19 49</td>
<td>Retrospective Study</td>
<td>Iliac crest</td>
<td>20.60%</td>
<td>NR</td>
<td>UC</td>
<td>X-ray</td>
<td>Prevalence of impacted canines and factors associated with canine impaction</td>
</tr>
<tr>
<td>[55]</td>
<td>40</td>
<td>8-12</td>
<td>8 12 NR</td>
<td>Retrospective Study</td>
<td>Iliac crest</td>
<td>32.50%</td>
<td>NR</td>
<td>UC (24) BC (16)</td>
<td>X-ray</td>
<td>Bergland scale and canine eruption</td>
</tr>
<tr>
<td>[47]</td>
<td>40</td>
<td>9.15</td>
<td>NR NR 16 24</td>
<td>Retrospective Study</td>
<td>Iliac crest</td>
<td>5.20%</td>
<td>NR</td>
<td>UC</td>
<td>CT</td>
<td>Mean bone graft survival</td>
</tr>
<tr>
<td>[44]</td>
<td>27</td>
<td>9.04</td>
<td>8.63 9.45 9 18</td>
<td>Retrospective Study</td>
<td>Cranial</td>
<td>6.25%</td>
<td>Yes, those who needed UC(22) and BC(5)</td>
<td>X-ray + CT</td>
<td>Enemark's classification and Method of Meazzini</td>
<td>2 a 18.5 years</td>
</tr>
<tr>
<td>[49]</td>
<td>11</td>
<td>10.4</td>
<td>8.8 11.6 NR</td>
<td>Randomized Clinical Trial</td>
<td>rBMP-7</td>
<td>9.05%</td>
<td>Yes, 72.72%</td>
<td>UC (9) BC (2)</td>
<td>X-ray</td>
<td>KindelanScale</td>
</tr>
<tr>
<td>[37]</td>
<td>60</td>
<td>8.5</td>
<td>11 17 43</td>
<td>Retrospective Study</td>
<td>Iliac crest</td>
<td>18.08%</td>
<td>Yes, 100%</td>
<td>UC</td>
<td>X-ray</td>
<td>Risk of canine impaction</td>
</tr>
<tr>
<td>[33]</td>
<td>24</td>
<td>9.25</td>
<td>NR NR NR</td>
<td>Retrospective Study</td>
<td>Iliac crest</td>
<td>12.50%</td>
<td>Yes, those who needed UC</td>
<td>X-ray or CT</td>
<td>Eruption of the canines, inclination and development of the canine root before and after EOAS</td>
<td>0.5 years</td>
</tr>
<tr>
<td>[50]</td>
<td>414 (93, G1=53 and G2=26)</td>
<td>11.5</td>
<td>NR NR 176 238</td>
<td>Retrospective Study</td>
<td>Iliac crest (216) x rBMP (198)</td>
<td>G1(24.5%) G2 (19.2%)</td>
<td>Yes, those who needed UC (G1=163 and G2=146) and BC (G1=53 and G2=52)</td>
<td>UC (48) and BC (8)</td>
<td>X-ray</td>
<td>Presence of complications and eruption of the canines</td>
</tr>
<tr>
<td>[38]</td>
<td>56</td>
<td>10.66</td>
<td>NR NR 24 32</td>
<td>Retrospective Study</td>
<td>Iliac crest</td>
<td>5.40%</td>
<td>Yes, those who needed UC</td>
<td>X-ray</td>
<td>Bergland scale, Kindelan and eruption of canines</td>
<td>1 year</td>
</tr>
<tr>
<td>[57]</td>
<td>42</td>
<td>NR</td>
<td>9 16 19 23</td>
<td>Retrospective Study</td>
<td>Iliac crest</td>
<td>33.33%</td>
<td>NR</td>
<td>UC (36) and BC (6)</td>
<td>X-ray</td>
<td>Eruption of canines</td>
</tr>
</tbody>
</table>

NR: Not Reported; UC: Unilateral Cleft; BC: Bilateral Cleft
In regard to the study design, three studies selected were randomized clinical trials, one case report article, seven prospective cohort articles, 24 retrospective cohort studies, and no case-control article [8,10,14,26-37,40-53,57].

The selected studies analyzed the success of alveolar bone grafting using scales using linear, angular measurements or three-dimensional measurements through X-ray examinations and/or CT scans. In 25 studies the evaluators used only radiographs to verify the success of the graft and the eruption of the tooth in the grafted area, in six studies the evaluators used only CT scans for this analysis, two studies used both X-rays and CT scans and in one study used radiographs in some patients and CT scans in other patients, as shown in Figure 5 [8,10,14,26,31-37,39,44,46-57].

The follow-up period for postoperative evaluation and analysis of the conditions of the canine/or lateral distal to the cleft ranged from 6-months to 22 years, and was 6-month in seven articles was 1-year follow-up in 12 articles and two or more years of follow-up in 15 articles [8,10,14,26-37,39-57].

Discussion

This systematic review included 35 studies evaluating spontaneous eruption or impaction of the canine tooth after the secondary bone graft in the treatment of patients with cleft lip and/or palate. Because many of the articles selected are prospective or retrospective cohort studies with relatively small sample sizes and often using descriptive outcome variables, these articles are at high risk of bias, and therefore the observed results should be treated with caution.

The iliac crest is the most commonly used donor site for the rehabilitation of patients with cleft lip and palate in the main treatment centers worldwide and is considered the gold standard [11]. The iliac crest graft was conducted in most of the studies analyzed that evaluated the postoperative success and the rate of eruption of the canine teeth [32,33,36,39,40,51,53]. This is because the iliac crest has enough bone to completely fill the alveolar cleft and at the same time it presents a large medullary portion with osteoinductive cells that accelerate the transformation of the grafted bone and it facilitates the eruption of the canine tooth. However, Enemark et al., [10], compared iliac crest and mandibular graft, and found no statistical difference in the success of the procedure and canine tooth impaction rates in both groups, with a value of approximately 35% impaction for both autogenous bone sources. In fact, the symphysis or mandibular branch region presents a smaller amount of medullary bone than the iliac crest, although they are intra-oral donor sites with lower morbidity than the iliac crest, and may be indicated in cases of small alveolar slits.

Other donor sites, such as the tibia, rib and skullcap, have also been used. Of the articles selected, only the study by Han et al., [44] used the skull cap as a bone source. The skull cap is less preferred as a donor site than the iliac crest because of its lower bone marrow content and mainly due to potential complications including dura mater lesions and subdural hemorrhages [11]. According to Han et al., [44], when only the external cortex is removed to collect the pure spongy bone, preserving the internal cortex, it avoids these complications, also increasing the chance of success of the graft.

The main benefit of using tissue engineering aided by growth factors rather than autogenous ones in SABG is the reduction of hospital stay time and the reduction of donor site morbidity [14]. Currently there is a growing search for a type of bone substitute ideal for SABG, which has osteoinductive, osteoconductive and osteogenic characteristics capable of forming a new bone with characteristics similar to the autogenous iliac crest bone. For this, the bone substitute is ideally bioabsorbable and mechanically stable in order to allow the canine to erupt over the grafted area without any type of barrier [50]. In this review, studies by Alonso et al., [14], Ayoub et al., [49] and Hammoudeh et al., [50] used tissue engineering with growth factors (rh-BMPs) for the reconstruction of alveolar clefts, obtaining good results in the analysis of the bone formation and eruption of the canine teeth through the graft.

Thus, one of the main objectives of SABG is to allow the eruption of the canine at the cleft/cleft site to avoid or minimize the need for prosthetic rehabilitation, hence the importance of this review in assessing the frequency of spontaneous eruption or impacting canine teeth. It has been observed through this systematic review that the eruption of the canine through the bone graft can occur spontaneously when well planned, that is, the right moment and age and well-conducted pre-surgical orthodontics [14,31].

On the other hand, the study by Feichtinger et al., [41], which used iliac crest in 16 patients with unilateral cleft, maxillary canine impaction rate was approximately 94%, considered to be discrepant and out of the mean of the set of reviewed articles, but the authors did not mention whether there was previous orthodontics. Despite this, the results of Feichtinger et al., [41] in the evaluation of success were positive regarding the volume of bone formed after one year of follow-up, measured by tomographic analysis.

Even with adequate planning and all the correct conduits, there is a greater risk of impacting or retaining maxillary canines in patients with cleft lip and palate than in the general population [25]. In the article by Enemark et al., [10], the authors indicate that the greater impaction in these patients may be associated with the effects of primary surgeries performed in early childhood, but to date there is no study to prove this relationship.

The treatment of an impacted canine usually involves a surgical approach to expose the crown, attach an orthodontic appliance to the crown, and perform orthodontic movement to correct position or remove the tooth, making treatment more time-consuming and costly [58]. It is believed that the time to wait for spontaneous canine eruption through the graft is approximately 2-years, so the 6-months period may have been insufficient for this evaluation in some revised articles which is based on the results obtained in the present study [8,10]. Another important issue to be evaluated is the time of analysis of the spontaneous eruption of canine teeth. The normal age of spontaneous eruption of the maxillary permanent canines in patients who do not have CP is in the age range of 11 years to 12 years, so the correct thing is to analyze and consider only canine impaction rates in patients submitted to SABG surgery, who were evaluated postoperatively with age above 12-years [26,31,36,39,43,44,47,50,55,59].

On the other hand, Matsui et al., [34] argue that early surgical exposure is necessary to correct inadequate angulations and large deviations of canines when detected radio graphically after SABG, less than 11 years of age, to take advantage of eruptive capacity, and spontaneous eruption should not be expected in these cases, as it would result in higher rates of impaction without success of orthodontic traction.
One factor that may be associated with the risk of impacting canines is the size of the alveolar cleft, as also observed by Matsui et al., [34], where the results suggested that the width of the nasal side cleft is related to the need for surgical exposure of permanent canines in children with cleft lip and/or palate. Another factor that may be associated with the risk of impaction and need for surgical exposure of the canine crown is the inclination of the long axis of the canine in relation to an imaginary vertical line parallel to the median sagittal line, which some authors affirm that the larger this greater slope is the risk of impaction, however, according to the study by Vellone et al., [33], there is no relation between the inclination and the risk of impaction of the canine, with a result of 87.5% of the cases that presented spontaneous eruption of the canine and 12.5% required exposure and orthodontic traction.

The authors of the selected studies agree that the ideal period of bone grafting is between eight and twelve year of age in the mixed dentition period, which is a phase that does not affect the growth of the maxillary complex and allows the correct eruption of the canine tooth or lateral when this tooth is distal to the cleft. Thus, 28 articles were excluded from the review because they included in their studies adolescent patients above 16 years of age and young adults, therefore being submitted to tertiary or late bone grafting, since from that age the canine is normally with the complete formation of the root and the apex closed, hindering the spontaneous eruption of the canine tooth. In addition, tertiary alveolar bone graft procedures are related to a high percentage of failure essentially due to the difficulty of closing the oro-nasal fistulas and bone resorption of the teeth facing the slit, needing to be studied and evaluated separately.

In the studies included in the review, no relation was observed between the mean age at which SABG was performed and the frequency of canine impaction. Kleipoort et al., [30] was the only one of those selected who demonstrated in their study that early secondary alveolar bone graft (prior to eruption of permanent incisor teeth) did not modify the risk of permanent maxillary canine impingement compared to graft prior to maxillary canine eruption (14.29% and 21.88%, respectively, without significant statistical difference) and regardless of the presence or absence of permanent lateral incisor agenesis.

Conclusion

According to this literature review, it was observed that the canine teeth impaction rate is not frequently cited in the results for the evaluation of SABG success. In addition, due to the high risk of bias in the included studies, sufficient evidence was not found to relate the impacting rate of permanent canines to the type of bone source used or to the maxillary expansion prior to grafting. Therefore, this review opens new perspectives for studies on the evaluation of canine rash status to be performed after SABG in patients with CP. In addition, it would serve to better understand the causes of impacting canine teeth in this type of patient and in this way minimize these factors, as well as reduce the need for surgeries for coronary exposure and orthodontic traction.

References

22. Kindelan JD, Nashed RR, Bromige MR. Radiographic assessment of

