Hepatotoxicity Associated with Nutritional Supplements Containing Anabolic Steroids

Guaraná de Andrade Thais*, Vargas Karen Arce, Biccás Beatriz Nunes, Carvalho Angela Cristina Gouvêa, Agoglia Luciana and Esberard Eliane Bordalo Cathál

Department of Medicine and Pathology, Antônio Pedro University Hospital, Federal Fluminense University, Brazil

Abstract

Background and Objectives: The objective of this article was to emphasize the hepatotoxicity associated with the use of nutritional supplements and anabolic-androgenic steroids, as well as discussing the sale of the latter as a dietary supplement.

Methods: This is a case series of two patients who developed hepatic damage after the consumption of anabolic-androgenic steroids, accompanied by a detailed bibliographic research on this topic.

Results: We present two young men who developed significant liver damage, both with hyperbilirubinemia pattern after consumption of anabolic-androgenic steroids. This was associated with considerable morbidity, although both recovered without liver transplantation. The two anabolic-androgenic steroids were being marketed as dietary supplements.

Conclusions: Although classified as Class V controlled substances in Brazil, anabolic-androgenic steroids are the cause of severe hepatotoxicity. Although the National Sanitary Surveillance Agency acts in the regulation of such substances, some of these products are still marketed as dietary supplements, requiring a more rigorous surveillance by health professionals.

Introduction

Testosterone was discovered and isolated in 1935 and since then there have been several attempts to develop synthetic derivatives (usually by 17α-alkylation) with the goal of making it orally active and prolonging its biological activity [1,2]. Many of these products, commonly known as Anabolic-Androgenic Steroids (AAS), have been developed, being more anabolic and less androgenic than their parent molecule [2]. The most commonly used derivatives include nandrolone, oxandrolone, stanozolol and oxymethylene. There are some clinical situations that suggest their use, especially for conditions such as cachexia [3] related to the immunodeficiency virus and aplastic anemia [4]. However, they came to discredit after the use by athletes in order to boost performance. In 1975, the International Olympic Committee Medical Committee added anabolic steroids to its list of banned substances, and in 1991 all these were classified as class III controlled substances (Anabolic Steroids Control Act of 1990). Pub. L. 101-647.1901, 104 Stat. 4851) by the Food and Drug Administration.

Although classified as Class V controlled substances in Brazil, anabolic-androgenic steroids were being marketed as dietary supplements. The National Sanitary Surveillance Agency acts in the regulation of such substances, some of these products are still marketed as dietary supplements. Testosterone was discovered and isolated in 1935 and since then there have been several attempts to develop synthetic derivatives (usually by 17α-alkylation) with the goal of making it orally active and prolonging its biological activity [1,2]. Many of these products, commonly known as Anabolic-Androgenic Steroids (AAS), have been developed, being more anabolic and less androgenic than their parent molecule [2]. The most commonly used derivatives include nandrolone, oxandrolone, stanozolol and oxymethylene. There are some clinical situations that suggest their use, especially for conditions such as cachexia [3] related to the immunodeficiency virus and aplastic anemia [4]. However, they came to discredit after the use by athletes in order to boost performance. In 1975, the International Olympic Committee Medical Committee added anabolic steroids to its list of banned substances, and in 1991 all these were classified as class III controlled substances (Anabolic Steroids Control Act of 1990). Pub. L. 101-647.1901, 104 Stat. 4851) by the Food and Drug Administration. In spite of this, many anabolic steroids are available in natural products stores and can also be purchased easily on the internet. What is more worrying is that they are being marketed as dietary supplements.

Intravenous administration of M-STANE (2α,17β-dimethyl-5a-androst-3-one-17b-ol 10 mg) which contains ultradrol, apreproterol and oxymethylene. There are some clinical situations that suggest their use, especially for conditions such as cachexia [3] related to the immunodeficiency virus and aplastic anemia [4]. However, they came to discredit after the use by athletes in order to boost performance. In 1975, the International Olympic Committee Medical Committee added anabolic steroids to its list of banned substances, and in 1991 all these were classified as class III controlled substances (Anabolic Steroids Control Act of 1990). Pub. L. 101-647.1901, 104 Stat. 4851) by the Food and Drug Administration. In spite of this, many anabolic steroids are available in natural products stores and can also be purchased easily on the internet. What is more worrying is that they are being marketed as dietary supplements.

Intravenous administration of M-STANE (2α,17β-dimethyl-5a-androst-3-one-17b-ol 10 mg) which contains ultradrol, apreproterol and oxymethylene. There are some clinical situations that suggest their use, especially for conditions such as cachexia [3] related to the immunodeficiency virus and aplastic anemia [4]. However, they came to discredit after the use by athletes in order to boost performance. In 1975, the International Olympic Committee Medical Committee added anabolic steroids to its list of banned substances, and in 1991 all these were classified as class III controlled substances (Anabolic Steroids Control Act of 1990). Pub. L. 101-647.1901, 104 Stat. 4851) by the Food and Drug Administration. In spite of this, many anabolic steroids are available in natural products stores and can also be purchased easily on the internet. What is more worrying is that they are being marketed as dietary supplements.
liver disease, excessive alcohol intake, medication use or travel; as well as family history of liver disease. At admission the patient was hemodynamically stable, but had a marked conjunctival jaundice. His liver was palpable 2 cm below the right costal border. However, there was no evidence of fluid overload or hepatic encephalopathy. Initial laboratory results revealed a total bilirubin level of 27.2 mg/dL (0.1-1.2 mg/dL), the conjugated fraction was 21.2 mg/dL; alanine aminotransferase 38 U/L (16-63 U/L); aspartate aminotransferase of 54 U/L (15-37 U/L); 701 U/L alkaline phosphatase (46-116 U/L); a gamma-glutamyltransferase of 61 U/L (15-85 U/L); serum albumin of 2.8g/dL (3.5-5.3 g/dL); INR of 1.1. Viral serologies for hepatitis A, B and C, Epstein-Barr virus, cytomegalovirus as well as anti-nuclear antibody titers, antimitochondrial antibody, and anti-smooth muscle antibody were all negative. Ultrasonography showed no evidence of biliary obstruction or chronic liver disease. Hepatic biopsy was performed, whose histopathological study revealed cholestatic liver disease with marked cholestasis and porto-portal fibrosis, in addition to the presence of portal venous ectasia (Figures 1A and 1B). We chose a conservative treatment with ursodeoxycholic acid 900 mg/day. The patient had jaundice (+/-+) when he was discharged, without signs of encephalopathy, with a prothrombin time of 100% and in a good physical status. Figures 2A and 2B show the course of hyperbilirubinemia as well as an isolated peak of alkaline phosphatase reaching a level of 701 U/L in the absence of a change in the level of gamma-glutamyltransferase. Jaundice resolved over a period of 8 weeks. At this time ursacol was suspended because the patient had no pruritus. At the last follow-up evaluation in August 2015, the total bilirubin level was 0.34 mg/dL with alkaline phosphatase of 122U/L.

Case 2

The second patient was a 28-year-old man, a bricklayer, who was referred to the hepatology department of Antônio Pedro University Hospital in January 2017 for diagnostic elucidation. He presented as symptoms: progressive jaundice, choloria, acholic feces and also reported a weight loss of 10 kilograms in the last three months and pruritus. He reported using Winstrol (stanozolol) for three weeks, in an attempt to lose weight. He also reported a weight loss of 10 kilograms in the last three months and pruritus. His liver was palpable 2 cm below the right costal border. However, there was no evidence of fluid overload or hepatic encephalopathy. Initial laboratory results revealed a total bilirubin level of 27.2 mg/dL, with the conjugated fraction being 11.94 mg/dL, albumin of 4.26 g/dL; alkaline phosphatase of 200U/L; 42U/L gamma-glutamyltransferase; 38U/L aspartate aminotransferase; 156U/L alanine aminotransferase; international standard rate for prothrombin time was normal and viral serologies and autoantibodies were negative. Ultrasonographic imaging showed a regular and homogeneous enlarged liver (reaching the right flank), with no evidence of intra- or extra-hepatic dilatation. The patient was treated conservatively with symptomatic treatment, as an outpatient. However, there was no significant improvement in bilirubin levels even with the AAS suspension since the onset of the clinical condition. A hepatic biopsy with subsequent histopathological study (Figure 3A and 3B) revealed cholestatic hepatitis with sinusoidal dilatation (SOS/VOD) Budd-Chiari simile, compatible with anabolic use, in addition to coexisting lobular and interface hepatitis suggestive of autoimmune hepatitis, possibly induced by the substance. Presence of portal fibrosis with short fibrous septa (F2). He was discharged with cholestryamine, hydroxyzine, ursodeoxycholic acid; in April 2017, hyperbilirubinemia showed a gradual decrease. The patient was re-admitted in July 2017, with a total bilirubin level of 2.55 mg/dL and transaminases were within normal limits.

Discussion

The two patients mentioned presented an important hepatic injury due to the use of AAS. Our first patient was consuming M-STANE, which contains a pre-hormone called ultradrol that stimulates the conversion of synthetic substances from the supplement, leading
to a high hormonal load. This has the same function as pure AAS. Our second patient used Winstrol. It contains a synthetic steroid derived from testosterone called Stanozolol, which has the purpose of decreasing the glycoprotein SHBG, responsible for the binding of some hormones, such as testosterone. The decrease in SHBG causes free testosterone to increase, favoring its effects. Because of the serological and epidemiological exclusion of other causes and the compatibility in liver histopathology, the AAS consumed by these two patients was the most likely cause of hepatotoxicity. Initially, other causes of liver disease were excluded and imaging studies revealed no evidence of biliary obstruction. The second patient had a history of alcohol consumption, but the biopsy was not compatible with an alcohol-induced injury. It should be emphasized that pre-existing liver disease or the concomitant use of other drugs may increase the hepatotoxicity associated with AAS [2]. Thus, it is conceivable that alcohol may have increased susceptibility to hepatic injury induced by AAS in our second patient. Furthermore, hepatic biopsy in both patients was consistent with AAS-induced hepatotoxicity [5-8]. Finally, both LFT results showed spontaneous improvement after discontinuation of the substance.

Currently, AASs are classified as controlled substances (The Anabolic Steroid Control Act of 1990 [section 21 U.S.C. 844]), therefore, the mere possession, manufacture and distribution of these products (except for strict medical prescription) is considered illegal. However, in spite of this, AAS are not only available on the internet and in "natural products" stores, but are also being marketed as dietary supplements [6,9-11]. Shipley’s Washington Post article drew attention to the following six anabolic steroids sold as supplements: halodrol-50, Ergomax LMG (Anabolic Resources LLC) (contain madol); Superdrol (Anabolic Resources LLC), Prostanoloz (Anabolic Resources LLC) (similar to stanozolol), FiniGenX Magnum Liquid (PharmGen X, San Marcos, CA) (similar to nandrolone); and Methyl 1-P (Legal Equipment-LG Sciences, Brighton, MI) (contains two steroids, progestin, and a second steroid that resembles androstenedione).

In addition to that, the classification of AAS as controlled substances did not prevent its increasing use. Anabolic steroid use among high school seniors increased from about 2% in the early 1990s to 3.4% in 2004 in the United States [12]. Men are more likely to use AAS than women, [4] and recent data indicate that currently about 1 million men consume AAS in the United States [12]. Four out of five AAS users take the drug for cosmetic reasons only [13]. Most AAS consumers seek immediate aesthetic results, and therefore do not mind their possible side effects. The psychiatric community identified some of these individuals as having muscle dysmorphia, a condition also known as reverse anorexia nervosa [14]. In an internet search on AAS we found an anonymous questionnaire on a popular website among users of these products. Of the 500 AAS users who answered the questionnaire, 78% were not bodybuilders; about 60% reported amounts of 17-methylated anabolic-androgenic steroids in effervescent applications of anabolic-androgenic steroids. Clin Ther. 2001; 23: 1355-1390.

In a study in patients with aplastic anemia who received AAS, 35.5% had altered liver function test results, although only half of them (17.3%) developed jaundice [20]. In most cases, cholestasis improved with supportive therapy after 12 months of AAS discontinuation [21,22]. Pruritus responded to choleteric agents such as ursodeoxycholic acid [23,24]. Although, in most cases, cholestasis has been described as benign, fatal cases, although rare, have been reported [22]. Cholestasis induced by AAS is pure (i.e., not associated with hepatocellular damage). Rarely, however, a lesion similar to hepatitis may occur [25]. Cholestasis results from a change in hepatocyte biliary secretion [26]. Mechanisms, however, remain speculative. Studies in rats (Welder et al. [27]) showed that hepatotoxicity and increased levels of liver enzymes were drug-specific changes and that AAS had direct toxic effects on hepatocytes. Other animal studies indicated that oxidative stress could play a role [28], which in turn may result in impairment of the canalicular bile salt export pump [29]. Structural changes induced by AAS include degenerative effects on mitochondria and lysosomes [30].

In conclusion, although AAS-induced cholestasis is uncommon, it is potentially fatal and is associated with significant morbidity. This is well prominent in the cases presented in this report. Besides that, health professionals need to maintain a high level of vigilance over this scenario. It is important to regularly inquire patients about the consumption of AAS or dietary supplements. Also, it is imperative to educate our patients about the hepatotoxicity associated with the use of this class of products.

References


