Decreased Lipid Serum Level after Pituitary Adenoma Resection

Jianmei Yang1,2,3, Miaoging Zhao1, Yequn Qin1, Qiang Zhu3, Qiangxiu Wang4, Kunpeng Wu5,6, Shouan Yi7, Haitao Yuan8, Lingwei Liu9,2,2, Ranran Shi1,2,2, Yashuang Yang1,2,1, Ying Gong1,2,2, Ru Feng1,2,2, Sisi Luan2,2, Yizhou Zou1,2,2, Wenyu Jia1,2,2, Zhenyu Yao1,2,2, Liya Zhang1,2,2, Xiang Li1,2,2, Zhao He9, Xu Hou1, Ling Gao2,3,8,* and Jiajun Zhao1,2,3,*

1Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, China
2Shandong Academy of Clinical Medicine, China
3Shandong Clinical Medical Center of Endocrinology and Metabolism, China
4Department of Pathology, Shandong Provincial Hospital affiliated to Shandong University, China
5Department of Medical Service, Shandong Provincial Hospital affiliated to Shandong University, China
6University of Sydney at West mead Hospital, Australia
7Department of Cardiac Care Unit, Shandong Provincial Hospital affiliated to Shandong University, China
8Shandong Provincial Hospital affiliated to Shandong University, China

Abstract

Objective: The aim is to evaluate the relationship between pituitary adenoma and serum lipid by pre- and post-operative.

Methods: A retrospective analysis based on the clinical records of patients with pituitary adenoma was performed. A total of 1095 patients were diagnosed and underwent surgery through the endoscopic transsphenoidal approach at the Shandong Provincial Hospital (Jinan, China) from July 2010 to June 2015. According to the inclusion criteria, 959 patients were included and analyzed. The fasting lipid profile was obtained in the medical records. Pituitary adenomas are classified as different types according to histological diagnoses. The proportion of serum lipid disorders in various pituitary adenomas was analyzed in pre- and post-operative.

Results: Of all patients with PA, approximately 75.7% of patients exhibited dyslipidemia. Each type of tumor was positive association with the serum lipid level (pure Adrenocorticotropic Hormone (ACTH)+ adenomas > pure Follicle-Stimulating Hormone (FSH)/Luteinizing Hormone (LH)+ adenomas > chromophobic adenomas > pure prolactin (PRL)+ adenomas > pure Thyroid-Stimulating Hormone (TSH)+ adenomas > mixed pituitary adenomas > pure Growth Hormone (GH)+ adenomas). Additionally, the serum lipid level decreased after the pituitary adenoma resection. Surprisingly, lipid serum level elevated again when pituitary adenoma recurred and the serum lipid level sharp reduced again follow the second operation. Pituitary adenoma accompanied with dyslipidemia was more easily relapsed. The recurrence ratio of pituitary adenoma in the patients with dyslipidemia was high and up to 2-fold that without lipid disorders, especially TSHoma.

Conclusion: There was the relationship between pituitary adenoma and dyslipidemia.

Keywords: Pituitary; Pituitary adenomas; Resection; Recurrence; Serum lipid levels

Introduction

The pituitary gland, a crucial neuroendocrine organ, includes many types of cells. Its main function is to synthesize and secrete different types of hormones. Pituitary adenomas are usually benign monoclonal neoplasms caused by a mixture of pituicyte alterations together with a changed endocrine and paracrine regulatory milieu [1]. Thus, it can cause serious health problems such as abnormal target organ function, pain, disability and even death [2-6]. Pituitary adenomas have a high prevalence in the world, and are the third most frequent tumor type after meningiomas and gliomas in the central nervous system, and account for 15% of all intracranial neoplasms [7-10]. In clinical practice, we found many patients with pituitary adenomas are usually accompanied by hyperlipidemia, which is the main cause of cardiovascular diseases. However, it has been unclear if there is an association between pituitary adenomas and serum lipid profile.
Pituitary adenomas are classified as chromophobic adenomas and chromatophilic cell adenomas, which include pure Prolactin (PRL)+ adenomas, pure Growth Hormone (GH)+ adenomas, pure Adrenocorticotropic Hormone (ACTH)+ adenomas, pure Follicle-Stimulating Hormone (FSH)/Luteinizing Hormone (LH)+ adenomas, pure Thyroid-Stimulating Hormone (TSH)+ adenomas and mixed pituitary adenomas according to histological diagnoses. Abnormal cell function induced by pituitary adenomas can lead to corresponding hormone level disorder [2,11]. Recently, many studies reported the pituitary hormones have extra-effect besides its target. Our previous study found that pituitary hormone, TSH, could increase cholesterol and Triglyceride (TG) synthesis in the liver and elevate serum levels of lipids independent of other hormones such as thyroid hormones [12-15]. FSH, another kind of pituitary hormones, was correlated with serum cholesterol levels in normal menstruating women and postmenopausal women [16,17]. However, it is unclear whether all pituitary hormones are correlated with lipid serum level.

Pituitary adenomas have abnormal serum pituitary hormone levels. Erem C et al., [18] found that 22 patients with pure PRLoma had dyslipidemia. However, the relationship between different endocrine phenotype of adenoma and serum lipid profile remains unclear now.

In the present study, we performed a retrospective analysis focusing on the patients with pituitary adenomas and their lipid profile before and after operation including first occurrence and recurrence. We surprisingly found a strong correlation between pituitary adenomas and dyslipidemia. This study would remind doctors to pay attention to the lipid levels of patients with pituitary adenoma.

Subjects and Methods

Patient demographics

A total of 1095 patients diagnosed with pituitary adenomas using an endoscopic transphenoidal approach at the Shandong Provincial Hospital affiliated with Shandong University (Jinan, China), July 2010 to June 2015 were included in this retrospective study. As described in a study by Shao S et al., [9], all adenomas were resected by transsphenoidal surgery and identified by histological diagnoses. Abnormal cell function induced by pituitary adenomas can lead to corresponding hormone level disorder [2,11]. Recently, many studies reported the pituitary hormones have extra-effect besides its target. Our previous study found that pituitary hormone, TSH, could increase cholesterol and Triglyceride (TG) synthesis in the liver and elevate serum levels of lipids independent of other hormones such as thyroid hormones [12-15]. FSH, another kind of pituitary hormones, was correlated with serum cholesterol levels in normal menstruating women and postmenopausal women [16,17]. However, it is unclear whether all pituitary hormones are correlated with lipid serum level. Pituitary adenomas have abnormal serum pituitary hormone levels. Erem C et al., [18] found that 22 patients with pure PRLoma had dyslipidemia. However, the relationship between different endocrine phenotype of adenoma and serum lipid profile remains unclear now.
glucocorticoids, nonsteroidal anti-inflammatory drugs, antiepileptic drugs, rifampin, furosemide, heparin or β-adrenoceptor blockers in the past 3 months [12]. Generally, the patients were clinically stable at the time of hospitalization, and those with serious conditions or who were in the intensive care unit were excluded. Ultimately, 959 patients (452 males and 507 females) were selected and initially analyzed in the present study.

We successfully followed up to 749 from 959 after surgery. Additionally, those patients lacking of post-operative serum lipid levels, less than 6 months and more than one year after surgery were excluded. Finally, 363 patients with complete and reliable clinical data were further analyzed. Among of them, 129 cases relapsed and after excluding subjects with missing vital data, 103 cases relapsed patients with complete and reliable clinical data were further analyzed, including 50 males and 53 females. The selection process is illustrated in the supporting information (Figure 1).

The local ethics committee approved the retrospective review of the patients’ medical records and licensed the records for research purposes only.

Definition of dyslipidemia with pituitary adenoma

According to the National Cholesterol Education Program Adult Treatment Panel III criteria, isolated hypertriglyceridermia was defined as triglycerides ≥ 1.70 mmol/L (150 mg/dL) and isolated hypercholesterolemia was defined as total cholesterol (TC) ≥ 5.18 mmol/L (200 mg/dL) and/or low-density lipoprotein cholesterol (LDL-C) ≥ 3.37 mmol/L (130 mg/dL) [19]. Isolated low high-density lipoprotein cholesterol (HDL-C) was defined as HDL-C < 1.04 mmol/L (40 mg/dL). Mixed dyslipidemia was defined as more than one abnormal lipid component.

Statistical analysis

Statistical tests were performed using SPSS version 18.0 for Windows (Chicago, IL, USA). Data are expressed as the means ± standard deviation or numbers (percentages). Differences were compared using ANOVA. We investigated the effects of adenoma size on lipid parameters using a general linear model. The relationships between adenoma size and serum lipid parameters of different subtypes were evaluated using partial correlation analysis after adjustment for confounding factors (age, sex, BMI, FPG and SBP). All calculated values were two-sided, and P values less than 0.05 were considered statistically significant.

Results

General characteristics of pituitary adenoma patients

The 959 patients with pituitary adenomas included 452 males (47.1%) and 507 females (52.9%) with a gender ratio (male: female) of 1:1.1. The age of these patients at the time of initial diagnosis ranged from 1 year to 76 years (median, 46 years). The median age was 48...
years for males (range, 1 year to 76 years) and 45 years for females (range, 8 years to 73 years). The flow chart includes the analysis and corresponding data distribution of this study was shown in Figure 2.

All patients in our study underwent transsphenoidal surgery, and the excised tissue was subjected to hematoxylin and eosin and immunohistochemical staining. Immunohistochemical staining of PRL, GH, ACTH, TSH, FSH and LH were performed for adenoma histology after surgery. The clinicopathologic features of the patients and their adenomas are summarized in Table 1. Among the tumors, only a small percentage was chromophobic adenomas (29.2%). Most were chromatophilic cell adenomas (70.8%), including PRL+ (20.9%), mixed adenomas (17.3%), FSH/LH+ (12.1%), GH+ (11.7%), ACTH+ (6.7%) and TSH+ is the rarest form of pituitary adenomas (2.2%), as the study of Tjörnstrand A et al., [20] said. ACTH+, GH+ and PRL+ adenomas were occurred mostly in females, and FSH/LH+, TSH+ and chromophobic adenomas were occurred mostly in males. No obvious gender difference was observed for mixed adenoma.

In clinical practice, we found that many patients with pituitary adenomas also had dyslipidemia. To determine whether a correlation existed between pituitary adenomas and dyslipidemia, we performed a retrospective study.

First, the proportion of dyslipidemia in all enrolled patients with pituitary adenomas (n=959) was analyzed in Figure 3A,3B. The proportion of dyslipidemia was much higher than that reported previously epidemiological investigation in the general Chinese adult population [21-23].

As shown in Table 2, presenting a scan analysis of lipid profile in patients with different types of pituitary adenomas. We noted that the prevalence of dyslipidemia was over 65% for either type of adenoma. 85.94% (n=55) ACTHoma patients owned dyslipidemia, followed by FSH/LHoma (n=94, 81.03%), chromophobic adenoma (n=226, 80.71%), PRLoma (n=151, 75.5%), TSHoma (n=15, 71.43%), mixed adenoma (n=112, 67.47%) and GHoma (n=73, 65.18%). The major type of dyslipidemia in these patients was mixed dyslipidemia and most of them have high serum TC/LDL-C levels. The basic metabolic information of 959 pituitary adenoma patients was shown in Table 3.

In 959 patients, 774 patients had the data of adenoma size, which was determined based on radiographic data. The sizes of 734 adenomas were >1 cm (median, 2.81 cm, 95%), and 40 were ≤ 1 cm (median, 0.73 cm, 5%). We further explored the relationship between adenoma size and serum lipid profile. As shown in Table 4, the serum TC, TG and LDL-C levels showed a significantly positive association with the adenoma size, whereas the HDL-C levels showed a significantly negative association with the adenoma size, independent of confounding factors. It suggested that there was a close correlation between adenoma size and serum lipid profile.

Serum lipid levels decrease after surgery

To clearly observe serum lipid levels in post-first operative pituitary adenomas, we performed the follow-up of 959 patients post-operatively. A total of 363 patients with complete and reliable clinical data were further analyzed. When analyzing their pre- and post-operative data, we found that the proportion of patients with dyslipidemia was significantly decreased after surgery, from a pre-operative value of 73.0% to a post-operative value of 22.9% (Figure 3C). As presented in Figure 3D, the percentage of patients, who were pre-operative high lipid levels and post-operative normal lipid levels, was greater than 50%.

We also observed the change of serum lipid levels in post-first operative for every subtype of pituitary adenomas (Figure 3E). The prevalence of dyslipidemia decreased 39% to 56% in all pituitary tumor subtype after surgery. These results suggested a correlation between pituitary adenomas and abnormal serum lipid levels.

Serum lipid levels dependent on pituitary tumor existing in relapsed patients

To further confirm the correlation between pituitary adenomas and dyslipidemia, we focused on the serum lipid levels at four check
Table 1: Total number and sex ratio of pituitary adenomas.

<table>
<thead>
<tr>
<th></th>
<th>CA</th>
<th>PRLoma</th>
<th>GHoma</th>
<th>ACTHoma</th>
<th>TSHoma</th>
<th>FSH/LHoma</th>
<th>Mixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>280</td>
<td>200</td>
<td>112</td>
<td>64</td>
<td>21</td>
<td>116</td>
<td>166</td>
</tr>
<tr>
<td>Percentage (%)</td>
<td>29.2</td>
<td>20.9</td>
<td>11.7</td>
<td>6.7</td>
<td>2.2</td>
<td>12.1</td>
<td>17.3</td>
</tr>
<tr>
<td>Male/Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number</td>
<td>150/130</td>
<td>84/116</td>
<td>39/73</td>
<td>16/48</td>
<td>13-Aug</td>
<td>75/41</td>
<td>75/91</td>
</tr>
<tr>
<td>Percentage (%)</td>
<td>33.2/25.6</td>
<td>18.6/22.9</td>
<td>8.6/14.4</td>
<td>3.5/9.5</td>
<td>2.9/1.6</td>
<td>16.6/8.1</td>
<td>16.6/17.9</td>
</tr>
<tr>
<td>Ratio†</td>
<td>1.3:1</td>
<td>01:01.2</td>
<td>01:01.7</td>
<td>01:02.7</td>
<td>1.8:1</td>
<td>2.01</td>
<td>01:01.1</td>
</tr>
</tbody>
</table>

*Percentage is expressed as the ratio to total number of male (N=452) or females (N=507) respectively.
†The gender ratio is expressed as the quotient of percentage of men and women.

Abbreviations: CA: Chromophobe Adenoma; PRLoma: PRL+ Adenoma; GHoma: GH+ Adenoma; ACTHoma: ACTH+ Adenoma; TSHoma: TSH+ Adenoma; FSH/ LHoma: FSH/LH+Adenoma; Mixed: ≥2 Pituitary Hormones+ Adenoma

Table 2: The analysis of lipid profile in patients with different types of pituitary adenomas.

<table>
<thead>
<tr>
<th></th>
<th>CA (n=280)</th>
<th>PRLoma (n=200)</th>
<th>GHoma (n=112)</th>
<th>ACTHoma (n=64)</th>
<th>TSHoma (n=21)</th>
<th>FSH/LHoma (n=116)</th>
<th>Mixed (n=166)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr), mean (SD)</td>
<td>50.12 (11.91)</td>
<td>42.16 (13.89)</td>
<td>44.54 (11.49)</td>
<td>44.89 (14.26)</td>
<td>45.81 (15.08)</td>
<td>50.98 (13.50)</td>
<td>43.48 (13.11)</td>
<td><0.001</td>
</tr>
<tr>
<td>BMI, mean (SD)</td>
<td>25.74 (3.99)</td>
<td>25.70 (3.89)</td>
<td>27.66 (6.59)</td>
<td>25.25 (3.50)</td>
<td>24.40 (2.98)</td>
<td>25.31 (2.73)</td>
<td>25.84 (3.88)</td>
<td>0.011</td>
</tr>
<tr>
<td>Tumor size (cm), mean (SD)</td>
<td>2.88 (0.97)</td>
<td>2.61 (1.23)</td>
<td>2.38 (1.02)</td>
<td>2.63 (1.37)</td>
<td>2.91 (0.80)</td>
<td>3.02 (0.96)</td>
<td>2.50 (1.37)</td>
<td><0.001</td>
</tr>
<tr>
<td>No Dyslipidemia, No. (%)</td>
<td>54 (19.29)</td>
<td>44 (20.50)</td>
<td>30 (26.77)</td>
<td>9 (14.06)</td>
<td>6 (28.57)</td>
<td>22 (18.97)</td>
<td>54 (32.53)</td>
<td>..</td>
</tr>
<tr>
<td>Dyslipidemia, No. (%)</td>
<td>226 (74.71)</td>
<td>151 (75.50)</td>
<td>73 (65.18)</td>
<td>55 (85.94)</td>
<td>15 (71.43)</td>
<td>94 (81.03)</td>
<td>112 (67.74)</td>
<td>..</td>
</tr>
<tr>
<td>Isolated-hypercholesterolemia, No. (%)</td>
<td>67 (23.65)</td>
<td>43 (21.68)</td>
<td>15 (20.55)</td>
<td>18 (32.73)</td>
<td>4 (26.67)</td>
<td>22 (23.40)</td>
<td>34 (30.36)</td>
<td>..</td>
</tr>
<tr>
<td>Isolated-hypertriglyceridemia, No. (%)</td>
<td>12 (5.31)</td>
<td>10 (6.62)</td>
<td>6 (8.22)</td>
<td>5 (9.09)</td>
<td>2 (13.33)</td>
<td>3 (3.19)</td>
<td>7 (6.25)</td>
<td>..</td>
</tr>
<tr>
<td>Isolated-low HDL, No. (%)</td>
<td>21 (9.29)</td>
<td>19 (12.58)</td>
<td>15 (20.55)</td>
<td>4 (7.27)</td>
<td>2 (13.33)</td>
<td>10 (10.64)</td>
<td>16 (14.29)</td>
<td>..</td>
</tr>
<tr>
<td>Mixed-dyslipidemia, No. (%)</td>
<td>126 (55.75)</td>
<td>79 (52.32)</td>
<td>37 (50.68)</td>
<td>28 (50.91)</td>
<td>7 (46.67)</td>
<td>59 (62.77)</td>
<td>55 (49.11)</td>
<td>..</td>
</tr>
<tr>
<td>High TC/LDL-C, No. (%)</td>
<td>99 (78.60)</td>
<td>59 (74.68)</td>
<td>25 (67.57)</td>
<td>20 (71.43)</td>
<td>6 (85.71)</td>
<td>48 (81.36)</td>
<td>42 (76.36)</td>
<td>..</td>
</tr>
<tr>
<td>Normal TC/LDL-C, No. (%)</td>
<td>27 (21.40)</td>
<td>20 (25.32)</td>
<td>12 (32.43)</td>
<td>8 (28.57)</td>
<td>1 (14.29)</td>
<td>11 (18.64)</td>
<td>13 (23.64)</td>
<td>..</td>
</tr>
</tbody>
</table>

Continuous variables were compared by using the ANOVA test. P < 0.05 was considered significant.

Abbreviations: CA: Chromophobe Adenoma; PRLoma: PRL+ Adenoma; GHoma: GH+ Adenoma; ACTHoma: ACTH+ Adenoma; TSHoma: TSH+ Adenoma; FSH/ LHoma: FSH/LH+Adenoma; Mixed: ≥2 Pituitary Hormones+ Adenoma; TC: Total Cholesterol; LDL-C: Low-Density Lipoprotein Cholesterol; HDL-C: High-Density Lipoprotein Cholesterol; TG: Triglyceride

Discussion

In this retrospective study, we found that there was strong correlation between pituitary adenomas and serum lipid profile. The evidence was as follows. (1) The proportion of dyslipidemia was very high in the pituitary adenomas either first occurrence or recurrence and (2) The abnormal elevated lipid levels were sharp decreased accompanying the resection of tumor. Additionally, this study further demonstrated that pituitary hormones, except for their traditional target organ effects, also play an important role in other pathophysiological functions of the body.

Chughtai M et al., [24] reported that dyslipidemia is accompanied by obesity. We also noted that the most of the observed patients in this study had body fatness (i.e. overweight and obesity). Acharya R et al., [25] present a rare case of Diabetic Ketaocidosis (DKA) as an initial manifestation of Cushing’s disease secondary to ACTH-producing pituitary adenoma. Hypercortisolism caused by Cushing’s disease leads to diabetes mellitus, hypertension and obesity [26]. In pituitary adenoma patients, an increased incidence of stroke was observed compared with the general population [27]. Feelders RA et al., [28] reported that GH-producing pituitary adenoma is accompanied by only 4.29% in the patients without dyslipidemia. Thus, the patients with dyslipidemia at pre-operative made relapsed more common than those patients without dyslipidemia. The results in this section were consistent with our above findings.

As shown in Figure 6, the recurrence rate of pituitary adenoma was 9.37% in the patients with dyslipidemia at pre-first operative, and points (pre-first operative, post-first operative, post-first operative recurrence and post-secondary operative) of all relapsed patients, who underwent two surgeries. A total of 103 relapsed patients had complete and reliable clinical data. Figure 4 shows significant changes in the proportion of pituitary adenoma patients with dyslipidemia during the above four points. The prevalence of patients with dyslipidemia decreased from 83.9% (pre-operation) to 17.6% (post-operation). However, the proportion of dyslipidemia increased again in the patients with recurrent pituitary adenomas. The increased lipid levels in the recurrent patients reduced again follow the second operation, which fully established that the levels of serum lipids were dependent on pituitary tumor existing, and there was a close correlation between pituitary adenomas and dyslipidemia.

We further studied the recurrence rate of different tumor subtypes among 103 relapsed patients. Among 21, of these relapsed cases were chromophobic adenoma, comprising 7.5% of 280 chromophobic adenoma. Other relapsed cases included GH+ (n=8, 7.14% of subjects with pure GH+ adenomas), TSH+ (n=4, 19.05%), ACTH+ (n=10, 15.63%), FSH/LH+ (n=11, 9.48%), PRL+ (n=32, 16%) and mixed adenomas (n=17, 10.24%) (Figure 5). Our results suggested that TSHoma most commonly relapsed, followed by PRLoma. The results revealed that recurrence was associated with the pathological types of tumors.
A value of \(p < 0.05 \) was considered statistically significant. Values shown were adjusted for age, sex, BMI, FPG and SBP.

Abbreviations:
- TC: Total Cholesterol
- TG: Triglycerides
- LDL-C: Low-Density Lipoprotein Cholesterol
- HDL-C: High-Density Lipoprotein Cholesterol

Data are estimated marginal mean (mean), corresponding Standard Error (SE) and 95% Confidence Interval (CI).

- in the liver and adipose tissues [30-32]. For example, the expression of the TSH receptor has been detected in numerous extra-target gland tissues.

- serum lipid levels recorded in our study were at least 6 months after surgery. Considering the half-life of cholesterol metabolism is 75 days, the possibility of these patients owning dyslipidemia (data not shown). Additionally, among 959 patients with pituitary adenoma, we have observed 112 patients owning diabetes mellitus, cerebrovascular diseases. However, among 959 patients with pituitary adenoma, we have observed 112 patients owning diabetes mellitus, coronary heart disease or stroke at first pre-operation and found 76% of these patients owned dyslipidemia (data not shown). Additionally, considering the half-life of cholesterol metabolism is 75 days, the serum lipid levels recorded in our study were at least 6 months after surgery [29]. This made us get credible data.

Pituitary hormone receptors, once thought to be limited to target gland cells, have been detected in numerous extra-target gland tissues. For example, the expression of the TSH receptor has been detected in the liver and adipose tissues [30-32]. Our previous study reported that elevated triglyceride content through glycerol-3-phosphate acyltransferase 3 [14,15]. Additionally, our previous study reported that elevated TSH triggers mitochondrial ROS, and Babula D et al., [34] reported decreased nitric oxide serum level after pituitary adenoma resection [33]. Although no direct evidence, the aforementioned studies raise the possibility that pituitary adenomas by regulate triglyceride or cholesterol contents in adipose or hepatic tissue, affecting serum lipid levels, and this process may be related to mitochondrial ROS.

Continuous variables were compared by using the ANOVA test. \(P < 0.05 \) was considered significant.

Abbreviations:
- FPG: Fasting Plasma Glucose
- SBP: Systolic Blood Pressure
- DBP: Diastolic Blood Pressure
- TC: Total Cholesterol
- TG: Triglyceride
- LDL-C: Low-Density Lipoprotein Cholesterol
- HDL-C: High-Density Lipoprotein Cholesterol

Table 3: The basic metabolic information of 959 pituitary adenoma patients.

<table>
<thead>
<tr>
<th>CA (n=280)</th>
<th>PRLoma (n=200)</th>
<th>GHoma (n=112)</th>
<th>ACTHoma (n=64)</th>
<th>TSHoma (n=21)</th>
<th>FSH/LHoma (n=116)</th>
<th>Mixed (n=166)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPG (mmol/L), mean (SD)</td>
<td>5.61 (1.58)</td>
<td>5.39 (1.56)</td>
<td>7.14 (3.87)</td>
<td>5.36 (1.16)</td>
<td>5.11 (0.66)</td>
<td>5.43 (1.58)</td>
<td>6.00 (2.57)</td>
</tr>
<tr>
<td>SBP (mmHg), mean (SD)</td>
<td>132.25 (18.89)</td>
<td>126.84 (17.25)</td>
<td>134.02 (17.00)</td>
<td>130.44 (16.29)</td>
<td>131.24 (12.34)</td>
<td>132.72 (18.41)</td>
<td>131.22 (20.61)</td>
</tr>
<tr>
<td>DBP (mmHg), mean (SD)</td>
<td>84.10 (12.64)</td>
<td>81.58 (11.16)</td>
<td>84.11 (12.39)</td>
<td>86.32 (14.33)</td>
<td>84.43 (10.43)</td>
<td>84.13 (11.77)</td>
<td>83.75 (13.96)</td>
</tr>
<tr>
<td>TC (mmol/L), mean (SD)</td>
<td>5.33 (1.30)</td>
<td>5.06 (1.19)</td>
<td>4.80 (1.21)</td>
<td>5.53 (1.08)</td>
<td>5.03 (1.26)</td>
<td>5.44 (1.21)</td>
<td>4.97 (1.22)</td>
</tr>
<tr>
<td>TG (mmol/L), mean (SD)</td>
<td>2.09 (1.77)</td>
<td>1.86 (1.56)</td>
<td>1.73 (1.31)</td>
<td>1.92 (1.02)</td>
<td>2.89 (5.84)</td>
<td>2.15 (1.78)</td>
<td>1.83 (1.60)</td>
</tr>
<tr>
<td>LDL-C (mmol/L), mean (SD)</td>
<td>3.18 (1.00)</td>
<td>3.07 (0.91)</td>
<td>2.92 (0.95)</td>
<td>3.43 (0.89)</td>
<td>2.95 (0.69)</td>
<td>3.33 (0.95)</td>
<td>3.02 (0.87)</td>
</tr>
<tr>
<td>HDL-C (mmol/L), mean (SD)</td>
<td>1.19 (0.32)</td>
<td>1.17 (0.33)</td>
<td>1.21 (0.31)</td>
<td>1.27 (0.43)</td>
<td>1.10 (0.29)</td>
<td>1.15 (0.30)</td>
<td>1.19 (0.27)</td>
</tr>
<tr>
<td>apoA (g/L), mean (SD)</td>
<td>1.22 (0.19)</td>
<td>1.18 (0.20)</td>
<td>1.19 (0.22)</td>
<td>1.25 (0.24)</td>
<td>1.13 (0.18)</td>
<td>1.21 (0.18)</td>
<td>1.18 (0.21)</td>
</tr>
<tr>
<td>apoB (g/L), mean (SD)</td>
<td>1.08 (0.39)</td>
<td>0.99 (0.29)</td>
<td>0.92 (0.27)</td>
<td>1.08 (0.25)</td>
<td>0.93 (0.22)</td>
<td>1.07 (0.31)</td>
<td>0.90 (0.24)</td>
</tr>
</tbody>
</table>

Table 4: Estimated marginal means of serum TC, TG, LDL-C and HDL-C levels according to tumor size categories.

<table>
<thead>
<tr>
<th>Tumor size quartile</th>
<th>Mean</th>
<th>SE</th>
<th>95% CI</th>
<th>Mean</th>
<th>SE</th>
<th>95% CI</th>
<th>Mean</th>
<th>SE</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartile 1 (<2.0 cm)</td>
<td>4.86</td>
<td>0.08</td>
<td>4.70-5.02</td>
<td>1.51</td>
<td>0.07</td>
<td>1.37-1.66</td>
<td>2.93</td>
<td>0.06</td>
<td>2.80-3.05</td>
</tr>
<tr>
<td>Quartile 2 (2.0 cm-2.6 cm)</td>
<td>5.12</td>
<td>0.09</td>
<td>4.94-5.30</td>
<td>1.94</td>
<td>0.12</td>
<td>1.71-2.18</td>
<td>3.1</td>
<td>0.07</td>
<td>2.96-3.24</td>
</tr>
<tr>
<td>Quartile 3 (2.6 cm-3.4 cm)</td>
<td>5.33</td>
<td>0.08</td>
<td>5.17-5.50</td>
<td>2.08</td>
<td>0.1</td>
<td>1.88-2.27</td>
<td>3.25</td>
<td>0.06</td>
<td>3.12-3.37</td>
</tr>
<tr>
<td>Quartile 4 (≥ 3.4 cm)</td>
<td>5.46</td>
<td>0.1</td>
<td>5.23-5.66</td>
<td>2.48</td>
<td>0.21</td>
<td>2.08-2.89</td>
<td>3.25</td>
<td>0.07</td>
<td>3.11-3.39</td>
</tr>
<tr>
<td>Linear coefficient</td>
<td>0.148</td>
<td>0.166</td>
<td>0.106</td>
<td>0.148</td>
<td>0.003</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P value for linear trend</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data are estimated marginal mean (mean), corresponding Standard Error (SE) and 95% Confidence Interval (CI).

Acknowledgement
The authors thank AJE for professionally editing this manuscript, and thank the staff of the Department of Pathology and Medical Record Room at Shandong Provincial Hospital affiliated with Shandong University for helping us with access to medical records.

References

