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Short Communication
Natural aging develops a negative association with the ability to respond everyday’s stress related 

physiological conditions and develops a positive consequence with health deterioration and death 
[1]. Aging in fact, has its own detrimental effects on the molecules, cells, gross morphology and the 
normal function of the brain and body as a whole. During aging the brain shrinkages with a loss of its 
weight and volume, more specifically the grey matter of the brain with the neuronal cell death [2-4]. 
Among the brain regions the prefrontal cortex and hippocampus affects most during aging [2,3,5] 
with their region specific executive functions and processing rate of information [6]. The losses of 
dendrites and neurons have been shown to be associated with various age related neuro diseases 
[7-9]. In different aging-induced neurodegenerative diseases the senile plaque formation due to 
amyloid beta peptide deposition may be the signs of clinical mutations of genes, coding for Amyloid 
Precursor Protein (APP) or presenilins (PS1 and PS2) [10,11]. In consequences of the gene mutation, 
the reflection in biochemical alteration makes the scenario of senile plaque formation perfect. 
Previously, Fukumoto et al. [12] have shown that not only in aging-induced neurodegenerative 
diseases but also in the non-diseased aging pathology the presence of senile plaques are found 
with the same characteristics of amyloid beta protein deposition in different brain regions. It has 
been found that during aging different brain neurotransmitters (e.g., serotonin, dopamine) decline 
[13-15] with an increase of its monoamine metabolizing enzyme and mitochondrial dysfunction 
which may lead to form Reactive Oxygen Species (ROS) [16,17]. These damaged mitochondria are 
removed and degraded by the autophagic pathway [18] but the key regulator of autophagy, baclin-1, 
and expression is reduced in aging brain [19]. This may in-turn lead to accumulate the dysfunctional 
and degenerated mitochondria which in general up regulates the ROS generation. This ROS with 
the help of nitric oxide produces RNS and these ROS and RNS through the activation of Apoptosis 
Signal-regulating Kinase 1 (ASK 1), induced by Amyloid Beta (Aβ) cause neuronal cell death [20]. 
The production of amyloid beta from the Amyloid Precursor Protein (APP) is enhanced with the 
aging process and produces more Aβ by the increased activation of secretases (β and γ) [21,22]. The 
Neurofibrillary Tangles (NFTs) are another hallmark of pathological brain aging. The NFTs are 
formed due to hyperphosphorylation of tau protein. The Aβ-tau together plays a role towards more 
vulnerability of aging-induced neuro diseases [23] including dysfunction of mitochondria [17,24] 
and the function of different neurotransmitters (such as serotonin, glutamate, GABA, acetylcholine) 
[15,25-37]. As mentioned previously aging increases ROS and declines antioxidant system which 
in turn develops the antioxidant-ROS imbalance within the system. This imbalance makes an 
accumulation of ROS and may cause the cellular senescence and reduces the life span [38]. Arking 
[38] has also shown that the oxidative stress is minimum and the antioxidant activity is much higher 
in the long lived animals than in the short lived animals. This promising observation leads to deal 
with the antioxidant molecules, such as vitamin C, α-lipoic acid, resveratol, carnitine, carnosine, 
vitamin E etc and others to challenge or delay the aging process [39]. Among the antioxidant 
molecules, carnosine (a dipeptide) is one of them having some unique properties makes it special 
and different from others.

Carnosine was first discovered by Gulewitch and Amiradzibi [40], the Russian chemists, during 
their search for unidentified nitrogen-containing not-protein compounds in Liebig’s meat extract. 
It (carnosine) is an endogenous smallest (dipeptide) biomolecule containing two amino acids, 
Alanine (β) and Histidine (L) [41,42]. Carnosine has a metal chelating [43] and pH buffering [44] 
properties. Carnosine has also a gene regulatory property [45], anti-senescence activity [46] and 
inhibits the metastasis [47]. This carnosine can react with methylglyoxal (MG), a metabolic product 
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of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate, 
and other metabolic aldehyde-mediated macromolecular damage 
[48,49]. In physiological condition carnosine, in one hand can react 
with the oxidant molecules to scavange and on the other hand 
prevents the oxidative damages through both the enzymatic and non-
enzymatic mechanisms. Carnosine is present in the blood [41], 
skeletal muscle and in olfactory bulb of the brain in mammals [42]. It 
also presents in other brain regions but at concentration 10-1000 
folds less than the skeletal muscle contains [43]. It is degraded by an 
enzyme, carnosinase [50,51] and synthesized in the biological system 
by carnosine synthase (formerly carnosine synthatase) enzyme in 
presence of the rate limiting amino acid, β-alanine [52]. There are two 
forms of carnosinase: One is serum Carnosinase (CN1) [53] present 
in serum, Cerebro Spinal Fluid (CSF) and brain and the other one is 
tissue Carnosinase (CN2), which is present in liver, spleen and kidney 
as non-specific cytosolic dipeptidase [54]. CN1 has very specific 
substrate specificity and the CN2 has a wider range of substrate 
specificities [43]. It is [55] and Bellia et al. [56] have shown that serum 
carnosinase activity is increased and the brain regional carnosine is 
reduced with aging. Margles [55] has also shown that the olfactory 
bulb is enriched with carnosine and smelling sense is lost (hyposmia) 
with the loss of carnosine concentration in aging-induced diseases. In 
oxidative and nitrosative driven neuro diseases carnosine acts as a 
potent neuroprotectant by scavenging the reactive oxygen species 
such as singlet oxygen (O2

._), hydroxyl radicals (OH.) [43,57,58] by 
modulating the cytoprotective enzymes such as Superoxide Dismutase 
(SOD), heat shock proteins (HSPs) and Heme Oxygenase-1 (HO-1) 
[59-61] as well as counteract the metal-induced neurotoxicity [62] 
having antioxidant and antiglycating properties [58,63,64]. This 
biomolecule inhibits the 6-hydroxydopamine (6-OHDA)-induced 
stress in endoplasmic reticulum of SH-SY5Y neuroblastoma cell lines 
[65]. Carnosine reduces the glutamate levels and helps to protect the 
glutamate transporter-1 (GLT-1) expression in astrocytes exposed to 
ischemia [66]. In addition, Margles [55] and Hipkiss [64] have shown 
that age associated phenomenon of advance glycation end products 
(AGEs) is the result of the reaction between sugar aldehyde and 
amino group. They have also found that carnosine inhibits the sugar-
induced β-A4-amyloidogenic peptide aggregation. Kohen et al. [42] 
have shown that carnosine and its homologs (homocarnosine and 
anserine) can react with the peroxyl radicals to scavange the sugar-
induced β-A4-amyloidogenic peptide aggregation due to the presence 
of L-histidine. In another observation they have shown that the 
dietary histidine increases carnosine levels in rat muscle [67]. Though, 
Dunnet and Harris [68] during their study on the component amino 
acids (β-Alalnine and L-Histidine) of carnosine have revealed that the 
β-alalnine supplementation leads to increase the muscle carnosine 
concentration, this scenario was absent in L-histidine administration. 
Contradictory to this finding Chan et al. [69] have found that dietary 
carnosine did not increase the heart, liver or muscular carnosine 
concentration but the supplementation of carnosine together with 
α-tocoferol (Vitamine E) increases the liver and heart carnosine 
concentration. The exogenous supplementation of carnosine can 
prevent the protein carbonylation in the brain tissue against the 
ethanol-induced oxidative damage [70,71]. In mammalian brain 
homocarnosine is most prevalent dipeptide than carnosine [43]. The 
homocarnosine made up of the L-histidine and the inhibitory 
neurotransmitter GABA instead of β-alanine; whereas, carnosine is 
constituted with the β-alanine has the specific function depending on 
the molecular organization or combination [43]. In the physiological 
diseased condition carnosine has the beneficial role to attenuate the 

diseased oriented disorders [72-74]. In different diseased conditions, 
like aging-induced neurodegeneration, cancer, diabetic retinopathy 
carnosine plays a crucial role to overcome the physiological problem 
[72-74]. The growing number of evidences have indicated the 
protecting role of carnosine on the diabetes and diabetes related 
complications [75,76] like ocular diseases and neuropathy [74,77]. In 
ischemia and reperfusion oriented damage, carnosine also plays a 
protective role [78-80]. Carnosine due to its anti proliferative activity 
has generated its recent field of interest on cancer biology [73,81]. 
McFarland and Holliday [82] have given the breakthrough on the 
research of carnosine in the live cell model with the findings of 
protective role of carnosine on the senescence fibroblast cells to 
convert into the juvenile cells. After this breakthrough finding 
another feather was also added with the consecutive findings of 
longevity of fibroblast cells in presence of carnosine, providing a cross 
proof with the reverse phenotype withdrawing the carnosine [83]. 
Boldyrev et al. [84] and others [46,85] have shown that in the 
senescence accelerated mice carnosine prolonged the life span. These 
existing knowledge of carnosine as an antioxidant and the aging-
induced deteriorations have inclined the mode of research for further 
studies regarding aging and involvement of neurotransmitter system 
during aging to explore the importance of carnosine. The metabolic 
instability of carnosine due to the prompt degradable property of 
carnosinase has made a great interest to find out the way of explanation 
to explain the mechanism of action of carnosine in vivo with the 
exogenous supplementation [86,87]. The current research with this 
thought has been progressed a step forward to achieve the goal in 
reality regarding attenuation and withdraw in aging-induced 
deterioration in brain monoamine neurotransmitter system and 
neurodegeneration. Recently it has been found that the treatment of 
carnosine directly to the central nervous system can attenuate the 
aging-induced (a) brain regional (cerebral cortex, hippocampus, 
hypothalamus and pons-medulla) (i) changes (increase or decrease in 
a brain region specific manner) in serotonergic activity [87], (ii) 
changes (decrease or increase) in steady state levels of 5-HT, its 
precursor tryptophan (Trp) and metabolites 5-HIAA [86], (iii) 
increase in 5-HT metabolizing rate limiting enzyme MAO-A activity 
[24] and its mRNA expression [88], (b) reduction in blood platelet 
MAO-A activity and its mRNA expression [88,89]. These observations 
also provide an evidence of greater attenuation in more aged rats than 
the less aged rats without affecting the young rats. This greater 
attenuating effect of carnosine on aging-induced (a) brain regional (i) 
decrease in serotonergic activity [87] and (b) increase in blood platelet 
serotonergic function [88,89] has been observed with the increase of 
age of the aged rats which is the most crucial and so far neglected 
scenario. This has been recently discussed mechanistically with the 
updated existing knowledge [86,87]. It is well known that during 
aging the tissue carnosinase (CN2) activity is increased and hence its 
(tissue) carnosine content is reduced with the increase of age of the 
aged rats [56]. The carnosine administration into the mammalian 
body provides carnosine into the different brain regions, muscle 
tissues as well as circulation where the carnosine content is reduced 
due to an enhancement in carnosinase activity during aging [56,87]. 
To explain the greater effect of carnosine in more aged rats than the 
less aged rats, in spite of aging-induced increase of carnosinase 
activity, it may be stated that in more aged rats the β-alanine content 
may be increased in the brain regions and blood and may attain a 
significant level which may stimulate the carnosine synthase enzyme 
to recycle the β-alanine to form carnosine further in vivo, as β-alanine 
is a rate-limiting precursor of carnosine [43] and carnosine synthase 
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has a much higher Km for β-alanine [90]. Serena et al. [91] have also 
shown that the β-alanine supplementation in aged person increases 
the tissue carnosine content. In accordance with this concept, it has 
been hypothesized that the administration of carnosine may boost up 
the endogenous carnosine level with the β-alanine, a hydrolyzed 
product of carnosine and the resultant effect of this (boosted 
endogenous carnosine level) may act on the monoaminergic 
parameters as well as on aging-induced increase in ROS/RNS [92,93] 
to overcome the aging-induced increase in carnosinase activity with a 
greater percentage in more aged rats in comparison to the less aged 
rats [86,87], though further study is needed to confirm. 

In conclusion, it may be stated that for the aging-induced 
neurodegenerative disorders (like Parkinsons’ Disease) the treatment 
with carnosine as a combination with the traditional DOPA therapy 
may trail a new path of treatment [94] and carnosine being an 
endogenous biomolecule [42] may be used in near future as a 
molecular neuromedicine as neuroprotective/neuroregenerative 
agent by modulating cytoprotective enzymes such as SOD, HSPs, 
HO-1 etc [59-61] to overcome the aging-induced neural disorder-
related phenomena in geriatric individuals and would help to live 
a normal healthy life, if not like young individuals at per (at the 
biochemical, molecular and behavioral levels) for better tomorrow.
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