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Abstract
Formation of the nervous system in adult insects requires two separate but consecutive 
developmental events; embryogenesis and metamorphosis. During embryonic development, neural 
stem cells are formed and these cells give rise to a large number of neurons that constitute functional 
juvenile nervous system. This system develops continuously during post-embryonic development 
and then major restructuring of the nervous system takes place during metamorphosis. We have 
been particularly interested in the mechanisms underlying metamorphosis-associated remodeling 
of the nervous system. Here we will review past and recent discoveries associated with the nervous 
system development in the fruit fly, Drosophila melanogaster.

Formation of the larval CNS
Upon fertilization, the egg cell undergoes rapid nuclear and cellular division. Shortly after the 

initial completion of cell divisions, cells in the ventral neuroectoderm are genetically programmed 
to take two different fates; epithelial vs. neurons. Through Notch-Delta mediated lateral inhibition, 
specific groups of neuroectodermal cells are delaminated and become Neuroblasts (NB). As a result, 
there are 30 distinct NBs formed in each hemi-segment in Drosophila Ventral Nerve Cord (VNC) 
at stereotypic positions and their uniqueness is determined by spatio-temporal cues [1]. Every NB 
divides asymmetrically, giving rise to specific numbers of neurons, together of which forms a larval 
CNS [2,3]. Interestingly, the numbers of division cycle of each NB are genetically predetermined, 
resulting in heterogenous numbers of neurons born from each NB. For instance, NB7-3 divides 
only three times and gives rise to 6 neuronal precursor cells, two of which are eliminated via Notch-
induced apoptosis. By comparison, NB7-1 divides many more times and produces about 40 neurons 
[4-7]. One of the NB7-3 progeny is vCrz neurons and NB3-5 lineage was reported to give birth to 
CCAP neurons these two groups of peptidergic neurons have been excellent model systems for 
understanding the apoptotic cell death mechanisms during metamorphosis, as described later 
(Figure 1) [8,9].

Terminal differentiation or programmed death of NBs following their final cell division are 
the major factors determining the ultimate number of neurons derived from each NB [10-12]. In 
addition, survival of these neurons depends on the target-driven neurotropic stimulus, as neurons 
that failed to receive the neurotropic signals are programmed to be eliminated [13,14]. Such 
stochastic death of excessive embryonic cells has been well documented in the vertebrate CNS as 
well in which nearly 50% of embryonic neurons do not get enough trophic signals and thus are 
programmed to die [15-17].

CNS Metamorphosis
At the end of larval growth, extensive genetic reprogramming orchestrated by a steroid hormone, 

ecdysone, modifies the body patterns including the CNS in order to accommodate adult life styles. 
In holometabolous insects such as the fruit flies that undergo complete metamorphosis (i.e., egg-
larva-pupa-adult); larval organs are degenerated in conjunction with de novo formation of adult 
ones in pupa. We refer to the metamorphosis-associated cell death as ‘metamorphoptosis’ [17].

In contrast to complete degeneration of larval organs during metamorphosis, the larval 
CNS is sculptured extensively to form adult CNS. Two major cellular events occurring in the 
metamorphosing CNS are: (1) remodeling of persisting neurons. This event involves pruning of 
neurites followed by extension of new axons and dendrites to establish adult-specific neuronal 
architecture. (2) Programmed apoptotic death of obsolete larval neurons. These neurons are likely to 
perform functions specific to larvae or pupae, and then are eliminated as their roles are not required 
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in ensuing life stages. In both remodeling and apoptosis, ecdysone 
plays a key role.

The best-known case of remodeling is the Mushroom Body 
Gamma (MB) neurons. In the larval CNS, these neurons send 
bifurcating axons in two directions, dorsal and medial. Around 4 
hours to 6 hours After Prepupal Formation (APF), axons start show 
the first histological sign of axon remodeling, and then all medial 
and dorsal axons are fragmented and completely removed by 18 
hours APF [18,19]. The pruning of MB neurons seems to be initiated 
via activation of TGF-beta type-I receptor Baboon and type-II 
receptors, Punt and Wit [20]. These receptors are activated by glia-
derived ligand Myoglianin, and then the activated receptors induce 
expression of ecdysone receptor B1 (EcR-B1) isoform [21]. A recent 
study further showed that an immunoglobulin superfamily protein, 
Plum, facilitates the Myoglianin signaling to up-regulate EcR-B1 
expression [22]. The pruning event also requires Ultraspiracle (Usp), 
suggesting that EcR-B1: Usp heterodimer, a canonical receptor 
for ecdysone, is a key regulator for inducing pruning-associated 
cytological events such as the disassembly of the microtubules [19]. 
Despite these studies, it is unclear what factors act downstream of 
the EcR-B1: Usp. It was initially thought that axonal degeneration 
mimics apoptosis cytologically; however, MB axonal fragmentation 
does not seem to involve apoptotic machinery, as no evidence found 
for the role of caspases, the key apoptosis executioners [19]. This 
study, however, showed that Ubiquitin Proteasome (UPS)-mediated 
protein degradation is essential for the axonal pruning. More studies 
are needed to clarify the downstream pathway of EcR-B1: Usp.

In addition to the remodeling process in some neurons, other 
larval neurons are programmed to die during metamorphosis. 
Interestingly, these doomed neurons do not disappear at the same 
metamorphic stage. Instead, they show highly diverse timing of death 
during metamorphosis, indicating heterogeneity of molecular cell 
death mechanisms.

We propose three classes of doomed neurons based on their death 
timing. Death Class (DC)-I includes the neurons that die shortly after 
the onset of metamorphosis. The best-known model system in this 
class is the eight pairs of corazonin-producing neurons (vCrz) in 
the VNC (Figure1). Using an in vivo Caspase Sensor (Casor), these 
neurons are shown to initiate apoptotic program as soon as larvae 
turn into white prepupae, and then they are completely degenerated 
within 6 hours to 7 hours APF [23-26]. Genetic and transgenic 

studies have shown that both EcR-B1 and B2 isoforms are required 
to activate caspase dependent apoptotic events. Further analyses 
revealed essential role for the Usp and the grim cell death gene [6]. 
Together, it is likely that an ecdysone pulse at the end of larval growth 
activates EcR-B: Usp nuclear receptors, which induce expression of 
grim. Grim proteins antagonize caspase inhibitor DIAP1, thereby 
unleashing destructive power of the caspases. Despite these studies, 
it is yet to be understood the regulatory mechanisms underlying grim 
expression.

Other identified neurons in the Death Class-I are eleven pairs 
of CEv motoneurons and two pairs of CEd neurons in the ventral 
segments [26]. Quite interestingly, although the death timing of these 
neurons is similar to that of vCrz neurons, our data did not support 
the roles played by EcR (unpublished data). These results suggest that 
the apoptotic mechanisms of the CEd/v neurons are quite different 
from those of vCrz neurons.

Death Class-II is the larval neurons in which their apoptosis is 
triggered by a small ecdysone pulse at 12 hours APF, which marks 
prepupa-to-pupa transition. Only one group, RP2 motoneurons in 
the VNC, is well characterized for this class. The RP2 neurons are 
eliminated at 15 hours to 20 hours APF, and as observed for vCrz 
neuron death, RP2 apoptosis is triggered by ecdysone signaling 
through EcR-B isoforms [27].

Death Class-III includes the neurons that survive during 
metamorphosis but undergo apoptosis following adult emergence 
(a.k.a. eclosion). An example is a heterogenous group of ~300 
neurons (type-II) that are characterized by a high level of EcR-A 
expression, otherwise their neurochemical identities are unknown. 
Most type-II neurons undergo apoptotic death within 24 hours after 
eclosion [28,29]. Another group in this class is the neurons producing 
CCAP neuropeptide in the VNC (Figure 1). Most of CCAP neurons 
also die of apoptosis along with the type-II neurons [17]. Quite 
interestingly, in stark contrast to the case shown for DC-I and II, 
DC-III neurons are protected by ecdysone signaling during larval 
and pupal development. Because of high level EcR-A expression in 
these neurons, EcR-A is suggested to play a role for the provision of 
protection from premature apoptotic death. It is likely that ligand-
bound EcR functions as a repressor of the cell death gene grim 
during the metamorphosis (unpublished results). At eclosion, very 
low ecdysone titers initiate apoptotic program, most likely due to de-
repression of grim by unoccupied EcR [30]. These results highlight 
opposite roles of EcR for orchestrating two different fates of larval 
neurons during metamorphosis; pro-apoptosis (DC-I and II) vs. anti-
apoptosis (DC-III).

Metamorphosis of the Peripheral Nervous 
System (PNS)

A majority of larval sensory neurons are degenerated during 
metamorphosis and replaced with adult-specific neurons [31,32]. 
However, some groups of Dendritic Arborization (da) neurons 
survive into adulthood [22]. These da neurons undergo extensive 
dendritic remodeling processes involving first removal of dendritic 
arbors via severing, followed by fragmentation and clearance during 
5 hours to 16 hours APF [33]. As is the case for axonal degeneration 
in the MB neurons, dendrite breakage of the da neurons is mediated 
by EcR-B1: Usp complex and UPS [34]. Moreover, UPS degrades 
DIAP1, leading to the local activation of a caspase Dronc [35,36]. 
In conjunction with this, it is notable that production of a DIAP1 

Figure 1: Two different peptidergic doomed neurons in the larval CNS. (Left) 
Corazonin immunoreactive neurons. vCrz neurons that are programmed to 
die shortly after the onset of metamorphosis are highlighted (Death Class-I). 
(Right) GFP reported CCAP neurons. The neurons inside highlighted are 
undergo apoptotic death after adult eclosion (Death Class-III).
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antagonist, Hid, is elevated in the da neurons via down-regulation of 
translational repressors Nanos and Pumilio [37]. Additional genetic 
studies identified Sox14 (HMG transcription factor) as a downstream 
target of EcR: Usp and Mycal as a downstream of Sox14 [33]. Mycal 
possibly alters cytoskeletal arrangement or dynamics, which can be a 
prerequisite to dendritic pruning.

In summary, reconstruction process of the nervous system 
during metamorphosis is constituted by the remodeling of persisting 
neurons, apoptosis of obsolete neurons, and neurogenesis of adult 
specific neurons (not discussed here). Although the former two 
cellular events are regulated commonly by ecdysone signaling, 
responses of neurons are quite diverse depending on the neuronal 
identities; partial removal of neurites (axonal degeneration in MB 
neurons and dendritic pruning in da sensory neurons) and total 
destruction of neurons at different metamorphic phases (DC-I, II, 
III). It is still not understood how the same hormonal signal during 
metamorphosis triggers such diverse cell-type specific responses and 
how modes of EcR signaling are differentially executed. Molecular 
identification and functional characterizations of the EcR downstream 
factors will shed more light on the diverse mechanisms ongoing in the 
metamorphosing nervous system [38,39].
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