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Abstract
Cell based therapy has become the center of attention in developing novel treatment strategies 
to many disease conditions. Especially stem cells have gathered much attention due to their self-
renewal ability and clonogenicity. Hematopoitic Stem Cell (HSC) therapy is commonly employed 
in managing many cancers and conditions involving blood and immune system. With the discovery 
of mesenchymal stem cells which are found co-localized with HSCs in bone marrow, they have 
become more popular in past few decades due to their multitude of attractive biological features 
which make these cells the most attractive cell in regenerative medicine and dentistry. Tissue 
repair properties, ability to secrete paracrine factor, differentiation ability, immunomodulation and 
immune-privileged properties make them more amenable to treat many disease conditions like 
bone diseases, diabetes, strokes, myocardial infarction, etc. Most importantly the ability to isolate 
these cells from various tissues could overcome the many problems related to cell based therapies.

Introduction
Mesenchymal Stem Cells/Mesenchymal Stromal Cells (MSCs) are non-hematopoietic, 

multipotent fibroblastoid like cells with self-renew abilities. MSCs are characterized by their 
trilineage differentiation potential into bone, cartilage and fat tissue. Though the osteogenic 
potential of certain cells in bone marrow had been identified in late 1860’s MSCs have been first 
isolated in bone marrow by Friedenstein et al., [1]. These findings were substantiated by the similar 
works done by Pittenger et al., [2] which ultimately led to the recognition of this discrete stem 
cells in bone marrow stroma. MSCs constitute 0.001% to 0.01% of the total nucleated cells in the 
heterogeneous cell population in marrow. Though the concept of MSCs actually attributed to Bone 
Marrow derived Mesenchymal Stem Cells (BM-MSCs) however, at present time it encompasses 
cells from other sources such as adipose tissue, umbilical cord blood, umbilical cord, peripheral 
blood, dental tissues, nasal mucosa, salivary glands etc. and de facto almost from any postnatal 
tissue compartment [3]. MSCs are characterized by other properties such as adherence to plastic 
in culture and many cell surface markers they express as assessed by flow cytometry. It has been 
demonstrated that depend on the type of tissue the panel of antigens might differ but still they 
should express the more defining cell surface antigens such as CD73, CD90 and CD105. Bone 
marrow MSC niches include both endosteal and perivascular niches (Figure 1). In the bone marrow, 
MSCs are important in development and maintenance of the hematopoiesis by providing many 
soluble factors such as cytokines and growth factors. In addition, MSCs directly interact with the 
adjacent neighboring cells including HSCs and extracellular matrix via adhesion molecules and 
extracellular matrix proteins including integrins, ICAMs and selectins. There is a plethora of 
reports to show that MSCs are involved in immunoregulation by interacting with both myeloid and 
lymphoid cells of innate and adaptive immune systems. Immunoregulatory effects exerted by MSCs 
are via direct cell-to-cell interaction as well as by secreting soluble factors such as cytokines. MSCS 
mainly exert immunosuppressive effects on T cells, B cells and DCs [4-7]. However, interestingly 
immunoenhancing effects have been observed with B cells when co-cultured with MSCs suggesting 
that the cultural microenvironment may have some role for this conflicting observation [8]. MSCs 
have been demonstrated to exert tissue repair by homing to the injury site guided by chemokines 
released as a result of tissue damage and then differentiate into organ specific mature cells and exert 
their trophic effects at the injured tissue mimicking the leukocyte migration to sites of inflammation 
(Figure 2). MSCs home to the injured tissue from the circulation by rolling on the endothelium, 
adhesion, trans-endothelial migration, extravasation, and then migration towards the injured tissue 
(Figure 2). Given the lineage conversion ability of MSCs, their hematopoiesis support, and their 
immunoregulatory capabilities have led these multipotent cells to gain wide popularity in the field 
of stem cell biology and is considered a potential therapeutic target in ameliorating many skeletal 
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and non-skeletal disease conditions.

Characterization of MSCs
The current understanding on MSCs is that they are derived from 

pericyte fraction in vessel [9,10]. Pericytes are cells which surround 
the endothelial cells in capillaries and micro vessels in multiple organs 
and important in stabilizing blood vessels. The observation that made 
them to come to that conclusion is that cells with MSC markers also 
express pericyte markers. This relationship is further emphasized 
by using cell sorting for pericytes (CD146+, CD34-, CD45-, CD56-) 
and subsequent in vitro expansion into cells of multipotent lineages 
(osteogenic, chondrogenic, adipogenic, and myogenic) which express 
MSCs markers suggesting that pericytes may act as the reservoir of 
precursor cells capable of giving rise to multiple lineages [9,11]. 
A recent report has shown that adventitial cells (cells lining the 
outermost layer of all blood vessels except capillaries) as precursor 
of MSCs, suggesting that both pericytes and adventitial cells have the 
potential to be the precursors of MSCs which is an indication that the 
marrow stem/progenitor cell system might not be a highly ordered 
hierarchy and that more evidence is required to resolve as to exactly 
what cells are the precursors of MSCs [12].

Due to the ambiguity arose as a result of isolation of MSCs from 
varying sources using diverse procedures and different approaches to 
characterize the cells, among other reasons, the International Society 
for Cell Therapy (ISCT) proposed three criteria for human cells to be 
considered as MSCs [13].

1.	 Plastic-adherence in culture.

2.	 Ability to tri-lineage differentiation in vitro into osteoblasts 
(bone), adipocytes (fat) and chondroblasts (cartilage) under 
appropriate culture conditions.

3.	 Expression of certain surface markers by flow cytometry; 
the expression of SH-4/4 (CD73), Thy-1 (CD90), SH-2/endoglin (CD 

105) in greater than 95% of the culture and their lack of expression 
of markers including macrophage antigen CD 11b, monocyte and 
macrophage antigen CD14, B-lymphocyte antigens CD19 and 
CD79α, leukocyte antigens CD34 and CD45 and MHC class II 
antigen HLA-DR in greater than 95% of the culture.

Presently the panel of MSC markers is growing rapidly. In the 
pursuit of cell surface markers to best identify the MSCs has led to 
the identification of several markers such as CD146 (Melanoma Cell 
Adhesion Molecule- MCAM), CD271 (Low Affinity Nerve Growth 
Factor Receptor-LNGFR), Stro I and, so on [14-16]. Tormin et al., [17] 
showed that all CFU-Fs in human bone marrow are contained in the 
CD271+/CD45−/CD146−/low and the CD271+/CD45−/CD146+ fraction, 
and since all human BM-CFU are found in the CD271, this has the 
potential to be the most appropriate marker in MSC enrichment [17]. 
Delorme et al., [18] found that CD200, a new marker for MSCs is not 
expressed in BM hematopoietic cells and appeared to be one of the 
most efficient markers to reproducibly purify native MSCs. In addition, 
the in vitro adipogenic, osteogenic, and chondrogenic potentials 
of CD200+ cells were similar to that observed for cells separated by 
plastic adherence or selected by CD146 expression,  suggesting that 
CD200, a new marker for MSCs not expressed on BM hematopoietic 
cells have the potential to be one of the most appropriate markers to 
maximally purify native MSCs. Therefore, the antigens that give the 
highest CFU-F enrichment score when the MSCs are cultured should 
be directed against CD105, CD73, CD146 and CD200 [19].

Types of Mesenchymal Stem Cells
The vast accumulated knowledge and current understanding on 

MSCs have come from studies carried out on MSCs derived from BM. 
BM-derived MSCs (BM-MSCs) are usually obtained from the tissues 
such as iliac crest or sternum and then they are either directly plated 
or obtained by density gradient isolation. Culturing of cells for 12 
days to 14 days in growth medium containing Dulbecco’s modified 

Figure 1: Haematopoietic-support provide by MSCs in trabecular bone.
In the bone marrow Haematopoietic Stem Cells (HSCs) reside in two niches. HSCs in the endosteal niche are quiescent and nestin+ MSCs along with osteoblasts, 
maintain the quiescent state of HSCs via factors such as CXCL12, VCAM-1, Ang-1 and SCF. In addition, MSCs differentiate into tri-leange cells giving rise 
to osteoblasts, adipocytes and chondrocytes.  In the perivascular niche, netin+ MSCs along with CAR cells and sinusoidal endothelial cells provide the HSC 
maintenance.
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essential medium with fetal bovine serum and antibiotic solution 
usually give rise to fibroblastic like MSCs depleted of HSCs. There 
are plethora of reports showing other sources of tissues having cells 
with the features of MSCs and include amniotic fluid, umbilical cord 
blood, peripheral blood, muscle, adipose tissue and many organs 
including brain, spleen and, so on [20]. It has been observed that once 
MSCs occupy various other organs and tissues they exert multitude 
of organ specific functions in them. However, given their different 
sources of origin, the functional characteristics of these MSCs might 
vary between each other [21].

Adipose tissue
Adipose Tissue (AT) is found in many areas in the human body 

including visceral and subcutaneous fat pads and hip area. AT is 
commonly obtained by lipoaspirate following cosmetic liposuction 
or lipectomy procedures. AT-derived MSCs or Adipose Stem Cells 
(ASCs) share the similar characteristics pertaining to BM-MSCs but 
have the advantage of easy isolation in large quantities and greater 
expansile property unlike BM-MSCs. Unlike the low CFU-F number 
of BM-MSCs (0.001% to 0.01%), ASCs are found to be about 3% 
of nucleated cells in adipose stroma. Adipose stroma consists of 
heterogeneous cells including pre-adipocytes, fibroblasts, cells of 
vasculature such as endothelial and leukocytes and nervous tissue. 
Adipocyte precursor cells are found in Stromal Vascular Fraction 
(SVF) of AT. Analysis of SVF by flow cytometry has revealed that two 
cell populations can be identified based on CD31 and CD34 expression 
and ASCs are found to be localized mainly within capillaries while 
a small fraction is found in the lumen of small vasculature [22]. 
However, the physiological roles of endogenous ASCs are not 
clarified yet. Though surface marker expression of ASCs is very much 
similar to BM-MSCs. ASCs express CD34 which reduce in culture, 
but not CD106 as BM-MSCs suggesting that both cells types share a 
related but distinct phenotypes [22-24]. There is clear line of evidence 
to show that while ASCs are more prone to differentiate towards 
adipocyte lineage, BM-MSCs are more inclined towards osteogenic 
and chondrogenic lineages [25,26]. ASCs have been shown to secrete 

pro-angiogenic factors such as Vascular Endothelial Growth Factor 
(VEGF), Platelet-Derived Growth Factor (PDGF) and, so on, making 
them more promising candidates in ameliorating conditions such 
as myocardial infarction [27,28].  Zuk et al., [29] showed that once 
Processed Lipoaspirate (PLA) include cells of mesenchymal nature 
with minute number of cells belonging to endothelial and pericyte 
fractions. Interestingly, the cells thus derived were able to grow 
continuously in culture giving rise to steady population expansions.

Amniotic fluid
Stem cells derived from Amniotic Fluid (AFS) following routine 

amniocentesis show cells with the features of MSCs with the ability 
to differentiate into cells of all three germ line lineages under specific 
culture conditions [30]. In addition, AFS cells show positivity to 
stage-specific embryonic antigen (SSEA)-4 [31].

Umbilical cord blood
Cord blood consists of varied type of stem cells, including 

hematopoietic stem cells, MSCs and monocyte-derived fibroblast-
like macrophages with the ability to differentiate to endothelial and 
insulin-secreting cells (with regard to latter cells) [32-35]. Umbilical 
Cord blood (UCB) is considered one of the sources of stem cells with 
little or no whatsoever adverse effect on the baby or mother since 
harvesting stem cells from UCB is non-invasive and produce abundant 
yield due to their higher proliferative capacity and is frequently used 
in HSC transplantations [36]. Despite the reduced frequency of 
MSCs compared to BM-MSCs, the generation of progeny from a 
single colony is greater than BM-MSCs with 20 population doublings 
after eight passages, suggesting that UCB-MSCs hold promise as an 
alternative source of MSCs for regenerative therapy [32]. Interestingly 
UCB-MSCs share some of the surface antigens common to human ES 
cells and hematopoietic cells such as Oct-4, nanog, SSEA-4 for former 
and CD45 for latter cells, respectively [35,37].When these cells were 
sorted and enriched for CXCR4+, Oct-4+, SSEA-1+, Sca-1+, lin-, CD45- 
they give rise to pluripotent Very Small Embryonic-Like (VESL) stem 
cells which were similar in nature to that isolated in BM by the same 

Figure 2: MSCs move from their niche in the BM into the circulation (mobilization) and then home to the injured tissue. Homing involves multi-step processes 
including rolling of cells on the endothelium, adhesion, transendothelial migration and extravasation. In the injured tissue MSCs by direct cell-to-cell contact and 
via secretion of trophic factors try to rejuvenate the tissue and bring back it to an acceptable functional level. In addition, MSCs differentiate and transdifferentiate 
into the organ-specific cells.
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group [35].

Umbilical cord/Wharton’s jelly
Umbilical cord consists of vessels embedded in mucoid matrix 

named Wharton’s jelly. Wharton’s jelly contains cells such as 
fibroblasts, collagen and hyaluronic acid forming extracellular 
matrix. Umbilical Cord-derived MSCs (UC-MSCS) are similar in 
phenotype and biological characteristics pertaining to BM-MSCs 
[38,39]. UC-MSCs are another good candidate as a substitute to 
BM-MSCs due to the ease of accessibility, lack of painful procedures, 
greater proliferative potential, less risk of contamination and hypo-
immunogenicity. The other attractive advantage of UC-MSCs is their 
ability to cryopreserve following the delivery of baby and use them in 
future purposes [40].

When cells from Wharton's jelly are cultured in low-serum 
media containing Fibroblast Growth Factor (FGF), Butylated 
Hydroxyanisole (BHA) and Dimethylsulfoxide (DMSO), the cells 
attain a neural stem cell phenotype which express neural stem 
cell markers such as Neuron-Specific Enolase (NSE) and neural 
proteins including NeuN and neurofilament M suggesting that 
given the appropriate culture conditions the UC-MSCS are capable 
of transdifferentiation into other cell types [41,42]. The ability of 
UC-MSCS to differentiate into dopaminergic neurons indicate that 
the cells are a promising target in ameliorating certain neurological 
disorders such as Parkinson's disease [43,44]. Moreover, these cells 
are able to transdifferentiate into cardiomyocytes under appropriate 
conditions in addition to their ability to differentiate into mesodermal 
lineages [45].

Peripheral blood
HSCs continuously supply mature and immature cells into the 

circulation from the BM while maintaining the undifferentiated stem 
cell population in the BM. Very modest number of MSCs also has 
been isolated from the Peripheral Blood (PB) in healthy volunteers 
as well as in patients having malignancies such as breast cancer 
[46]. The fresh PB usually contains cells of hematopoietic origin 
which express CD45 but not the mesenchymal marker CD90. When 
isolated by plastic adherence the cells give rise to non-fibroblast like 
cells mimicking monocytes/macrophages. Though the number of 
MSCs in PB (PB-MSCs) is very low, blood mobilization of MSCs 
by injecting GM-CSF could yield a 0.35% to 0.5% of MSCs by using 
Fibrin Microbeads (FMB) [46]. PB-MSCs are capable of self-renewal 
and differentiation into osteoblasts, chondroblasts and adipocytes 
similar to that of BM-MSCs [47]. A study done by Trivanović et 
al., [48] using UC-MSCs and PB-MSCs demonstrated that both cell 
types form less colonies in culture but colony formation is observed 
when CD133+ cells were selected suggesting that in addition to HSCs 
CD133+ cell fraction also has MSCs. In addition, in the presence of 
condition medium of BM-MSCs both UC-MSCs and PB-MSCs 
showed more colony formation. Moreover, UC-MSCs showed 
greater CFU-F and markers of pluripotent ES such as Sox2, Nanog 
than PB-MSCs though they have similar tri-lineage differentiation 
versatility and morphology.

Dental/oral tissues
MSCs have been isolated from dental tissues such as dental 

follicle of developing tooth, dental pulp of permanent teeth (DPSC), 
exfoliated deciduous teeth (SHED), periodontal ligament (PDLSC), 
gingival, and apical papilla of developing root (SCAP) [49-55]. Stem 
cells derived from the dental tissues have also been considered one 

of the potential candidates for regenerative medicine since they 
have been employed in regeneration of dental (including dentin, 
cementum, dental pulp and periodontal ligament) as well as non-
dental tissues such as bone and nerves [56-58]. Except for DPSC 
which shows moderate proliferative capacity other aforementioned 
types show high proliferation rates [59]. Ex vivo expansion of PDLSCs 
on biocompatible scaffolds in mineralization medium for 4 weeks 
have clearly shown the osteogenic potential of PDLSC indicating that 
MSCs have a big role to play in regenerative dentistry [60]. Though 
MSCs from dental/oral tissues share the common features pertaining 
to MSCs, due to their heterogeneity and their different roles in the 
particular niches, the genotypic pattern may differ among each other 
[61]. In addition, SCAP and DFPC being developing tissues have the 
broadest differentiation versatility than other cells [59]. Using viral 
vectors, Yan et al., [62] successfully reprogrammed MSCs of SHED, 
SCAP and DPSCs into induced Pleuripotent Stem Cells (iPSCs) 
suggesting that dental tissue derived MSCs form an additional source 
to produce iPSCs.

Cancer Stem Cells
Cancer Stem Cells (CSCs), also known as tumor-initiating cells 

constitute a small fraction of cells capable of differentiation and 
self-renewal are found in most cancers including hematological 
malignancies such as acute myeloid leukemia, cancers of breast, 
brain, lung, ovarian, prostates, testis, liver, esophagus, colon, and 
melanomas. These cells are shown to have the ability of tumor 
initiation, self-renewal, unrestricted proliferation, metastasis and 
exert more resistance to chemotherapy. Once injected the cells 
regenerate a phenocopy of the original tumor in immune deficient 
mice. Some of the techniques employed in isolating CSCs include 
long term cell culture, Magnetic Cell Sorting (MACS) and flow 
cytometry. Surface markers used in isolation or identification depend 
on the type of cancers.

Stem cells and CSCs have some common characteristics including 
dormancy, DNA-repair machinery, to name a few. In addition, 
they show resistance to drug-induced apoptosis by up-regulating 
antiapoptotic proteins Bcl-2 and Bcl-xL via secreting cytokines 
such as IL-4 and IL-10 [63]. CSCs employ several mechanism to 
escape cell destruction by radiotherapy and chemotherapy including 
prevention of entry of chemicals into the cell, synthesize of enzymes 
to withstand radiation-induced ROS and increased DNA damage 
repair, multidrug chemo resistance via transporters, dysregulation 
of cell renewal pathways such as Notch, BMI1 and Wnt, interfering 
biotransformation of drugs and escaping programmed cell death 
or apoptosis [64]. Furthermore, CSCs enhance angiogenesis via 
secretion of proangiogenic factors such as VEGF which is further 
enhanced under hypoxic conditions [65]. Several studies have shown 
that CD133 of CSCs confers resistance to radiation and enhances 
tumour recurrence after therapy [64,66].

In cancer conditions, MSCs seem to migrate to sites of 
tumorigenesis as well as colonize other sites without any tumor cells, 
such as lung, liver kidney, or spleen. However the tumor specific 
migration is attributed to the several growth factors including PDGF, 
VEGF, EGF, SCF/c-Kit and stromal cell–derived factor-1/CXCR4. 
Given the fact that MSCs are capable of homing to active tumor sites, 
studies are currently carried out to seek the feasibility of using MSCs 
as cellular vehicles for anti-cancer drug delivery [67].

The effect of MSCs on tumor growth and development is 
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controversial. Several studies have shown that MSCs co-injected with 
tumor cells can inhibit the tumor growth in many cancer animal 
models [68-70]. Contrary to these findings, MSCs also have been 
shown to increase tumor mass along with necrosis and angiogenesis 
[71]. This could be due to immunosuppressive effect as well as the 
upregulation of Stat-3 by secreting IL-6 [72]. There are several lines 
of studies which suggest that MSCs could spontaneously transform, 
however, this should be fully elucidated as duration of culture 
expansion could play a major role in this phenomenon.

MSCs Culture for Regenerative Medicine
Embryonic Stem Cells (ESC) are pluripotent and have the ability 

to differentiate into any lineage. Though it has been shown that 
reprogramming of somatic cells give rise to iPSC, due to the ethical 
issues surrounding the procurement of ESC, MSCs become more 
popular cellular-based therapy in regenerative medicine. The ideal 
properties of stem cells required for regenerative medicine include 
the ability to harvest abundantly using a minimum invasive method. 
In addition, the cells should be able to regulate into different cell 
lineages reproducibly by following Good Manufacturing Practice 
guidelines so that they can undergo autologous transplantation or to 
a different host by allogeneic transplantation [73].

MSCs have a pivotal role in regenerative medicine due to their 
attractive biological properties and immunomodulation and unique 
in comparison to other treatment modalities used so far which 
could only either alleviates the symptoms and signs or halts further 
progression of the disease. Most importantly the paracrine effects 
they show on the resident cells to repair the effete tissue and restore its 
function make these cells more appealing in regenerative medicine.

MSCs from bone marrow, the primary source of MSCs for clinical 
applications is commonly obtained by harvesting iliac crest. Unlike 
HSCs which can be obtained directly from marrow, bone marrow 
should be first plated and amplified to obtain MSCs [19]. MSC 
enrichment from total cells can be done by using plastic adherence 
technique or by immune selection [15]. In vitro expansion is 
necessary to obtain adequate number of cells for clinical application. 
Among other factors culture medium, cell plating density, passage, 
O2 tension, influence the expansion rate. Fatal Calf Serum (FCS) 
enriched with FGF-2 and PDGF or even platelet rich plasma derived 
products are known to promote MSCs expansion [74].

It has been shown that cells plated at low density (<1.5 × 105 
cells/cm2) gives the highest proliferation rate [75]. Prolonged in vitro 
culturing reduces differentiation potential of MSCs. Therefore for 
the clinical application the recommended is 1-2 passages to prevent 
changes in the phenotype and expression of adhesion and other 
molecules necessary for effective migration and homing of cells to 
injured tissues. More importantly since MSCs thrive in hypoxic niches 
the low levels of O2 (2% O2) seem to induce higher proliferation and 
differentiation, whereas the usual normoxic conditions of 20% O2 is 
thought to cause oxidative stress on MSCs [76].

Conclusion
MSCs are derived from various sources such as bone marrow, 

adipose tissue, umbilical cord, blood and so on. However, the yield 
varies depend on the tissue and they have been successfully used in 
therapy. However, depend on the source of MSCs; the differentiation 
versatility and functional equivalence of each type of cells are different 
indicating that there is no global stem cell type which can be used 

in all the disease conditions. Therefore, depending on the disease 
condition, the appropriate stem cell type should be carefully selected 
before applying in regenerative therapy.
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